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ANALYTICAL DEVELOPMENT OF AN EXPERIMENTAL PARADIGM
FOR C3 ORGANIZATIONS

ABSTRACT

' The bounded rationality constraint sets an upper limit on the rate with which decisionmakers can
process information satisfactorily. This constraint becomes a critical parameter in the design of

organizations carrying out command and control functions. Used as a design constraint, it
incorporates the the notion of avoiding degradation of performance due to excessive workload.
An experimantal paradigm was developed, a simple computer game for a single decisionmaker,
in which subjects were given a limited amount of time to perform a task. Both the amount of

time and the task were varied. An information thioretic model of the cognitive workload was
used to estimate the workload associated with the tasks. The experimentally determined time
threshold at which performance degraded rapidly and the computed cognitive workload led to a
value for the bounded rationality constraint for each subject and each task. The distribution of

the bounded rationality constraint across subjects for each task was found to be normal. Also,

the bounded rationality constraint of each subject as the task changed did not vary significantly.

The results of the experimental and analytical investigation may be used in the design of

multi-person experiments-d in organization design. ) [.
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1. INTRODUCTION

In the period 1982 to 1984, researchers at the Navy Personnel research and Development

Center in San Diego, California, carried out a series of experiments on the cognitive demands of

command and control decisionmaking (see, for example, Kelley and Greitzer, 1982; Greitzer and

Hershman, 1984). Using several versions of simulated Anti-Air Warfare (AAW) operations,

they observed a marked performance degradation when the task demands exceeded some limit.

Another set of experiments (Greitzer et al., 1984) considered the effect that concurrent tasks had

on performance. Results showed that while the two tasks were competing for shared resources,

they were not mutually inhibiting. Another observation was that subjects did not use optimal

strategies in accomplishing their tasks. The last aspect was explored further by trying to infer

strategies and to assess the effect that workload has on the choice of strategies.

The underlying concepts in that experimental effort were very similar, although not

identical, to the underlying assumptions of the mathematical theory of organizations that is being

developed at the MIT Laboratory for Information and Decision Systems (Levis 1984; 1988).

Therefore, a project was undertaken in order to relate the experimental results to the mathematical

theory. This report presents the results of the research effort.

The NPRDC work was focused on the single decisionmaker, while the MIT research

addressed the organizational problem, i.e., the effect that the cognitive limitations of individual

decisionmakers have on organizational performance. However, in order to design an

organizatior and predict its performance, it is necessary that the parameters characterizing the

components of the organization be known. In the case of the human decisionmakers, some

quantitative expression of the cognitive limitations is needed. The model that has been used is

that of the bounded rationality constraint, which states that if the workload rate exceeds some

value, rapid degradation of performance occurs. Knowledge of the value or a range of values

(with their associated probability distribution) for this threshold could then be used to calibrate

the decisionmaker model for used in the algorithms for organizational design and evaluation.

In addressing this issue, the first question is whether such a boundary or threshold exists

and whether it is stable across individuals and across tasks. An experimental program was

undertaken to investigate this question and place it within the proper framework in cognitive

psychology, experimental psychology, and mathematical modeling. The results of the first

experiment are the focus of this report.

9



In Chapter 2, the mathematical model ot the Interacting Decisionmaker is presented along

with the related models describing the tasks to be performed, the strategies to be used, and a

mathematical model for cognitive workload that is based on information theoretic concepts

(Levis, 1984). The methodology for evaluating organizational performance -- or the performance

of a single decisionmaker -- as a function of the strategies used is also outlined.

The question of workload, as addressed in the behavioral sciences, is discussed in Chapter

3. Specifically, important empirical results and methods from experimental psychology are

discussed in the context of determining the bounded rationality constraint of human

decisionmakers and in applying the results to command and control processes. This discussion

provides the framework for the experimental paradigm described in Chapter 4. The results

obtained from carrying out the experiment are presented in Chapter 5. Essentially, the experiment

consisted of measuring performance of individual subjects as the amount of time available to

carry out the cognitive task was varied.

In Chapters 6 and 7, the results are combined with the mathematical model of information

processing and decisionmaking to obtain estimates of the bounded rationality constraint. It is

shown, in Chapter 8, that the constraint exists and is stable when minor task changes are made.

Furthermore, it is stable across individuals and across tasks.

With these results, which are consistent with the findings at the Navy Personnel Research

and Development Center, it is now possible to use the mathematical theory of organizations to

design experiments for studying organizational performance in the context of tactical distributed

decisionmaking.
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2. THE INTERACTING DECISIONMAKER MODEL

The first step in modeling an organizational structure is the modeling of the tasks to be

performed by the organization. The second step is to develop an appropriate mathematical model

of the organization member. Specifically, this model must incorporate provisions for the variev

of interactions that can exist among decisionmakers in an organiztion. These two steps are

discussed in this chapter. In addition, the necessary analytical tools are introduced, namely, Petri

Nets and N-dimensional information theory. The former is used to describe, rather precisely, the

architecture of the decisionmaking model and of the organizations, while the latter is used to

model the cognitive workload of the individual decisionmakers.

2.1 PETRI NETS

In this work, only the basic properties of Petri nets are needed to describe the models. In

related work for the Office of Naval Research and for the Technical Panel on C3 of the Joint

Directors of Laboratories, several measures of performance (MOPs) of organizations have been

obtained using some more advanced concepts from Petri Net theory (Hillion and Levis, 1987;

Hillion, 1986). For an introductory treatment of Petri nets as modeling tools, the text by

Peterson (1981) is recommended.

Petri Nets are bipartite directed graphs represented by a quadruple (P, T, I, 0). By

convention, P is the set of one type of nodes, called places or circle nodes, and T is the set of

the second type of nodes, called transitions or bar nodes. Places can depict the presence of

signals or represent conditions; transitions can depict processes or events. Consequently, the

arcs that connect the nodes that form the graph can only go from one type of node to another -

either from a place to transitions, or from a transition to places. The mapping I corresponds to

the set of directed arcs from places to transitions, i.e., it defines the input places of the

transitions, while the mapping 0 corresponds to the set of directed arcs from transitions to

places; i.e., it defines the output places of each transition. For ordinary Petri Nets - the only type

considered here - the mappings I and 0 take values from the closed set (0,1); 1 denotes the

presence of a link between two nodes, while 0 denotes the absence.

A Petri Net consisting of four transitions and five places is shown in Figure 2.1. Tokens,

denoted by dots in places or circle nodes, control the execution of a Petri Net. A marking of a

Petri Net is a mapping which assigns a non-negative integer number of tokens to each place of
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the net. Since the number of tokens in a place, in general, is not bounded, there can be an

infinite number of markings associated with each net. A Petri Net is said to execute when a

transitions fires. A transition can fire, only if it is enabled. For a transition to be enabled, all

is input places must contain at least one token each. When a transition fires, it removes one

token from each input place and creates a new token in each of the output places of that

transition. One can envision a sequence of firings in the Petri Net of Figure 2.1: Let the initial
marking consist of a token in the first (leftmost) place. Then the first transition is enabled and it

fires. The token in the first place is removed and a token appears in the second place. Now the

second transition is enabled: it fires and the token is removed from the second place; a new one

appears in the third place, and so on. The execution halts when the fourth transition fires and a

token appears on the fifth place.

t t2  t3 t4

P P2  p3  P4  P5

Figure 2.1 A Simple Petri Net

A transition may have more then one output places. When it fires, a token is generated in

each output place. However, to model decisionmaking, it is convenient to introduce a special
transition, a decision switch, in which the output places represent alternatives. When the

decision switch fires, a token is generated in only one of the output places. A decision rule

associated with this special transition determines the place in which the token is generated. The

rule can be deterministic or stochastic; it can be independent of the attributes of the tokens in the

input places or it may depend on them.

A subnet of a Petri Net PN is a Petri Net PNs with places Ps that are a subset of the places P

of the original net and transitions Ts that are a subset of the transitions T of the original net. The
input and output mappings, Is and Os , are restricted to the arcs between the subsets Ts and Ps.
The use of subnets simplifies the graphical representation of complex organizations and allows

the depiction of the decisionmaker model at a level of detail appropriate to the problem being

solved.
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2.2 INFORMATION THEORY

Information theory was first developed as an application in communication theory (Sannon

and Weaver, 1949). But, as Khinchin (1957) showed, it is also a valid mathematical theory in
its own right, and it is useful for applications in many disciplines, including the modeling of a
simple human decisionmaking processes and the analysis of information-processing systems.

There are two quantities of primary interest in information theory. The first of these is

entropy: given a variable x, which is an element of the alphabet X, and occurs with probability

p(x), the entropy of x, H(x), is defined to be

H(x) a - 1 p(x) log p(x) (2.1)
x

and is measured in bits when the base of the algorithm is two. The other quantity of interest is
average mutual information or transmission: given two variables x and y, elements of the
alphabets X and Y, and given p(x), p(y), and p(xly) (the conditional probability of x, given the
value of y), the transmission between x and y, T(x:y), is defined to be

T(x:y) a H(x) - Hy(x) (2.2)

where

Hy(x) a=- I p(y) I p(xly) log p(xy) (2.3)
y x

is the conditional uncertainty in variable x, given full knowledge of the value of variable y.
McGill (1954) generalized this basic two-variable input-output theory to N dimensions by

extending Eq. (2.2):
N

T(xl:x 2: ... :xN) H(x) - H(xl,x2 .... xN) (2.4)

For the modeling of memory and of sequential inputs which are dependent on each other, the use

of the entropy rate, H(x), which describes the average entropy of x per unit time, is appropriate:
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H(x) = lim l [x(t), x(t+1),.... x(t+m-1)] (2.5)
m -,

The transmission rate, T(x:y), is defined exactly like transmission, but using entropy rate in the

definition rather than entropy.

The Partition Law of Information (Conant, 1976) is defined for a system with N- I internal

variables, w, through WN. 1, and an output variable, y, also called wN. The law states

NX H(wi) = T(x:y) + Ty(x:WlW 2 .. WN- 1) + T(w,:w 2 :...:wN.1:y) + HX(wI,w 2 .... w ny)
i=1

(2.6)

and is easily derived using information theoretic identities. The left-hand side of Eq. (2.6) refers

to the total activity of the system, also designated by G. Each of the quantities on the right-hand

side has its own interpretation. The first term, T(x:y), is called throughput and is desirnated

Gt . It measures the amount by which the output of the system is related to the input. The second

quantity,

Ty(x:wlw2 ... w..lWN) = T(x:w1 ,w 2, ....wN. 1,y) - T(x:y) (2.7)

is called blockage and is designated Gb . Blockage may be thought of as the amount of

information in the input to the system that is not included in the outpout. The third term,

T(w1 :w 2:...:wN.1 :y) is called coordination and is designated Gc . It is the N-dimensional

transmission of the system, i.e., the amount by which all of the internal variables in the system

constrain each other. The last term, Hx(w 1,w 2,...w..WNl,y), designated by Gn, represents the

uncertainty that remains in the system variables when the input is completely known. This

noise should not be construed to be necessarily undesirable, as it is in communication theory: it

may also be thought of as internally-generated information supplied by the system to supplement

the input and facilitate the decisionmaking process. The partition law may be abbreviated:

G = Gt + Gb + Gc + Gn (2.8)

A statement completely analogous to Eq. (2.8) can be made about information rates by
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substituting entropy rate and transmission rates in Eq. (2.6).

2.3 TASK MODEL

The organization interacts with its environment; it receives signals or messages in various

forms that contain information relevant to the organization's tasks. These messages must be
identified, analyzed, and transmitted to their appropriate destinations within the organization.
From this perspective, the organization, acts as an information user.

Let the organziation receive data from one or more sources (N') external to it. Every tn units
of time on the average, each source n generates symbols, signals, or messages Xni from its
associated alphabet Xn, with probability phi, i.e.,

Pni -P(xn-Xni) ; xni e Xn i = 1, 2 ....,Yn (2.9)

Pi = I ; n=l, 2, ... ,N (110)
i= I

where Yn is the dimension of xn. Therefore, I/'Tn is the mean frequency of symbol generation

from source n.
The organization's task is defined as the processing of the input symbols xn to produce

output symbols. This definition implies that the organization designer knows a priori the set of
desired responses Y and, furthermore, has a function or table L(xn) that associates a desired
response or a set of desired responses, elements of Y, to each input Xni C Xn.

It is assumed that a specific complex task that must be performed can be modeled by N'

sources of data. Rather than considering these sources separately, one supersource, composed
of these N' sources, is created. The input symbol x' may be represented by an N'-dimensional
vector with each source corresponding to a component of this vector, i.e.,

x1--(x 1,x2 ,...,xN') ; x'eX (2.11)

To determine the probability that symbol x'j is generated, the independence between components
must be considered. If all components are mutually independent, then pj is the product of the
probabilities that each component of 2'j takes on its respective value from its associated

15
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alphabet, Eq. (2.12). If two or more components are probabilistically dependent on each other,

N'

p 1 = P.j (2.12)
n=1

but as a group are mutually independent from all other components of the input vector, then these

dependent components can be treated as one supercomponent, with a new alphabet. Then a new
input vector, X, is defined, composed of the mutually independent components and these

super-components.
This model of the sources implies synchronization between the generation of the individual

source elements so that they may, in fact, be treated as one input symbol. Specifically, it is
assumed that the mean interarrival time Tn for each component is equal to T. It is also assumed

that the generation of a particular input vector, -j, is independent of the symbols generated prior

to or after it.
The last assumption can be weakned, if the source is a discrete stationary ergodic one with

constant interarrival time T that could be approximately by a Markov source. Then the
information theoretic framework can be retained (Hall and Levis, 1983).

The vector output of the source is partitioned into groups of components that are assigned to

different organization members. The j-th partition is denoted by xJ and is derived from the
corresponding partition matrix rJ which has dimension nj x N and rank nj, i.e.,

sJ = 7r x. (2.13)

Each column of 7J has at most one non-zero element. The resulting vectors xi may have some,

all, or no components in common.
The set of partitioning matrices (tl,R2,...,pn } shown in Figure 2.2 specify the components

of the input vector received by each member of the subset of decisionmakers that interact directly

with the organization's environment. These assigmnets can be time invariant or time varying.

In the latter case, the partition matrix can be expressed as

0 for t e (T)

n' (t) = (2.14)

for tE (T

16



The times (T) at which a decisionmaker receives inputs for processing can be obtained either
through a deterministic (e.g., periodic) or a stochastic rule. The question of how to select the set

of partition matrices, i.e., design the information structure between the environment and the

organization, has been addressed by Stabile and Levis (1984); Stabile (1981).

Figure 2.2 Information Structures for Organizations

2.4 THE DECISIONMAKER MODEL

The basic model of the memoryless decisionmaker with bounded rationality is based on the
hypothesis of F.C. Donders (1983) that information processing is done in stages. Specifically, it
is assumed that the two stages are (a) situation assessment (SA), and (b) response selection
(RS), which correspond to March and Simon's (1958) two stage process of discovery and

selection. The structure of this model, shown ia Figure 2.3, has been extended to include
interactions with other organization members, as well as memory. The extended model is shown

in Figure 2.4.

X --- SA RS y

Figure 2.3 Two-Stage Model
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Ie 
m  ISA IF RS

S x

Figure 2.4 The Interacting Decisionmaker with Memory

The DM receives signals x e X from the environment with interarrival time c. A string of

signals may be stored first in a buffer so that they can be processed together in the situation

assessment (SA) stage. The SA stage contains algorithms that process the incoming signals to

obtain the assessed situation z. The SA stage may access the memory or internal data base to
obtain a set of values do. The assessed situation z may be shared with other organization

members; currently, the DM may receive the supplementary situation assessment z' from other

parts of the organization; the two sets z and z' are combined in the information fusion (IF)
processing stage to obtain z". Some of the data (dI) from the IF process may be stored in

memory.

The possibility of receiving commands from other organization members is modeled by the

variable v'. A command interpretation (CI) stage of processing is necessary to combine the

siatuion assessment z" and v' to arrive at the choice v of the appropriate strategy to use in the
response selection (RS) stage. The RS stage contains algorithms that produce outputs y in

response to the situation assessment z" and the command inputs. The RS stage may access data

from, or store data in memory (Hall and Levis, 1983).

In this report, only the memoryless case is considered. Consequently, the general model

reduces to the one shown in Figure 2.5, where the Petri Net formalism has been used.
A more detailed description of the model is obtained, if the internal structure of the SA and

RS stages is considered. The situation assessment stage consists of a set of U algorithms

(deterministic or not) that are capable of producing some situation assessment z". The choice of

algorithms is achieved through specification of the internal variable u in accordance with the

situation assessment strategy p(u), or p(ulx), if a decision aid (e.g., a preprocessor) is present.

A second internal decision is the selection of the algorithm in the RS stage according to the
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response selection strategy p(vlz,v'). The two strategies, when taken together, constitute the

internal decision strategy of the decisionmaker.

SA IF CI RS
------------------------------------------

x y

Figure 2.5 The Memoryless Interacting Decisionmaker Model

The subnets representing the SA and the RS stages are shown in Figure 2.6. Note the

presence of decision switches in place of the regular transitions to indicate that only one of the

output places can receive a token at each firing.

IF CI

SA (RS

Figure 2.6 The SA and the RS Subnets

2.5 WORKLOAD

The analytical framework presented in Section 2.2, when applied to the single interacting

decisionmaker with deterministic algorithms in the SA and RS stages, yields the four aggregate

quantities that characterize the information processing and decisionmaking activity within the

DM:
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Throughput:

Gt = T(x,z',v':z,y) (2.15)

Blockage:

Gb = H(x,z',v') - Gt (2.16)

Internally generated information:

Gn = H(u) - Hz(v) (2.17)

Coordination:

U 'r*' IFCI
G= L [pigc(p(x)) + oLH(pj)] + H(z) + g'(p(z,z)) + g, (p(z,v,)

1=1

+ Y [p gi (p(zlv=j)) + c. H(p] + H(y) + H(z) + H(z) + Hz,v)
j=I

+ Tz(X': x') + Tz(X',': V') (2.18)

The expression for Gn shows that it depends on the two internal strategies p(u) and p(vlz)

even though a command input may exist. This implies that the command input v' modifies the
DM's internal decision after p(vlz) has been determined.

In the expressions defining the system coordination, pi is the probability that algorithm fi has
been selected for processing the input x and pj is the probability that algorithm hj has been
selected, i.e., u=i and v=j. The quantities gc represent the internal corodinations of the
corresponding algorithms and depend on the probability distribution of their respective inputs;

the quantities ai, ccj are the number of internal variables of the algorithms fi and hj, respectively.
Finally, the quantity H is the entropy of a binary random variable that takes one of its two values

with probability p.

H(p) = - p log 2 p - (1-p)log 2(-p) (2.19)

Equations (2.15) to (2.18) determine the total activity G of the decisionmaker according to the
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partition law of information, Eq. (2.6). The activity G can be evaluated alternatively as the sum

of the marginal uncertainties of each system variable. For any given internal decision stragety, G

and its component parts can be computed.

Since the quantity G may be interpreted as the total information processing activity of the

system, it can serve as a surrogate for the workload of the organization member in carrying out

his decisionmaking task.

The qualitative notion that the rationality of a human decisionmaker is not perfect, but is

bounded (March, 1978), has been modeled as a constraint on the total activity G. The specific

form for the constraint has been suggested by the empirical relation

t = c1 + c 2Gt

where t is the average reaction time, i.e., the time between the arrival of the input and the

generation of an output y. It is assumed that the decisionmaker must process his inputs at a rate

that is at least equal to the rate with which inputs arrive. The latter has been model by c, the

mean symbol interarrival time:

t= c1 + c2Gt T

or

1 c1  1 , 5
---t = -

c 2  c 2  c 2

The modeling assumptions in this work are that

- = G +G +G

c2 b n C

and that c2 does not depend on p(x). Then, the bounded rationality constraint takes the form

G=G +G 1 -- F (2.20)t+Gb+Gnl C -v=F
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where F can be considered as a rate of total activity and is measured in bits per second.

Inequality (2.20) represents a mathematical expression of only one aspect of bounded rationality.

Many other formulations are possible.

Weakening the assumption that the algorithms are deterministic changes the numerical values

of Gn and of the coordination term Gc (Chyen and Levis, 1985). If memory is present in the

model, then additional terms appear in the expressions for the coordination rate and for the

internally generated information rate (Hall and Levis, 1983).

2.6 MEASURES OF PERFORMANCE

As stated in Section 2.3, it is assumed that the designer knows a priori the set of desired

responses Y to the input set X. One measure of performance (MOP) of the organization that
reflects the degree to which the actual response matches the desired response can be computed as

shown in Figure 2.7.

The decisionmaker's actual response y can be compared to the desired response y' and a cost is

assigned using the cost function d(y,y'). If this function is a binary one, i.e.,

fO if y = y'
d(y,y') (2.21)

if y* y'

~ORGANIZATION [, Y

Figure 2.7 Performance Evaluation of an Organization
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then the expected value of this cost denotes the probability that the wrong decision is made, i.e.,

it is the probability of error.

In general, however, there is a cost cij associated with selection yi E Y when the desired

response is y'j e Y':

Cij = d(yi , y'j) (2.22)

so that

J= p(x.) cj p(Yilx.) (2.23)

where y'j is the desired response to task xj. This measure of performance can be interpreted as a

measure of the accuracy of the response, to the extent that a cost is associated with the degree

with which the actual decision deviates from the desired one.

This class of performance measures, described generically by (2.23), is not the only one that

has been considered. In related work (Andreadakis and Levis, 1987), measures of performance

that address time have been modeled and analyzed.

2.7 PERFORMANCE-WORKLOAD LOCUS

A useful way for describing the properties of the decisionmaker model, which is

generalizable to the properties of an organization, is through the performance workload locus. In

the case of a single performance measure, the accuracy measure J, and a single decisionmaker

with workload G, a two dimensional space is defined with ordinate J and abscissa G. The locus

is constructed by considering the functional dependence of J and G on the internal decision

strategies of the single decisionmaker.

Let an internal strategy for a given decisionmaker be defined as pure, if both the situation

assessment strategy p(u) and the response selection strategy p(vlz) are pure, i.e., an algorithm fi

is selected with probability one and an algorithm hj is selected also with probability one when the

situation is assessed as being zk:

Dk = (p(u--) = I ; (p(v=jlz=z k) = 1)) (2.24)
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for some i, some j, and for each zk element of the alphabet Z. There are n possible pure internal

strategies,

n = UVM (2.25)

where U is the number of f algorithms in the SA stage, V the number of h algorithm in the RS

stage and M the dimension of the set Z. All other internal strategies are mixed (Boettcher and

Levis, 1982) and are obtained as convex combinations of pure strategies:

D(Pk) = PkDk (2.26)
k=l

where the weighting coefficients are probabilities.

Corresponding to each D(pk) is a point in the simplex

pi=1, Pk!0 Vk (2.27)
k~l

The possible strategies for an individual DM are elements of a closed convex polyhedron of

dimension n-I whose vertices are the unit vectors corresponding to pure strategies.

The total activity G, the surrogate for the cognitive workload, is a convex function of the

decision strategy, i.e.,

G(D(Pk)) > 1 pi Gk (2.28)
k=1

where Gk is the workload that results when the pure strategy Dk, given by Eq. (2.24), is used.

The accuracy measure J can be related to the decision strategies in a similar manner.

Corresponding to each pure strategy Dk is a value of the performance measure, denoted by Jk.

Since each strategy is a convex combination of pure strategies, the value of J for an arbitrary

D(Pk) is given as a convex combination of the values of Jk, i.e.,
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J(D(Pk) d s aeTs uc
p eJ

e (2.29) 

The two expressions (2.28) and (2.29) can be used now to characterize the locus of points in the
(J,G) space that describe the decisionmaker.|

Exampl: Consider first the case of two pure strategies, D, and D2. This would correspond to

the case where the decisionmaker can choose only between two different algorithms f in the SA

stage, as shown in Figure 2.8. The strategy space for this case can be parameterized as follows:

Any strategy, D, can be expressed as

D = p, D1 + p2 D 2  (2.30)

Figure 2.8 The Petri Net for the Example

where

PI +P2 = 1

in accordance with (2.26) and (2.27). Let

pl = 1-  and P2=8

and let

0!5 1.
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Then, (2.30) can be rewritten as

D = (1-8) D1 + 8D 2  (2.31)

The strategy space can be described by the parameter 8: it is the line segment [0,1], as shown in

Figure 2.9, with the point 0 corresponding to pure strategy D1, point 1 to pure strategy D2, and

all points in between to all the mixed strategies.

D D 2

0 5 1

Figure 2.9 Strategy Space for Example

Then, it follows from (2.28) and (2.29) that

G(D(pk)) = G(D(8)) 2! (1-B)G + 8 G2  (2.32)

and
J(D(Pk)) = J(D(8)) = (1-8) J1 + 5 J2  (2.33)

Equations (2.32) and (2.33) are parametric in 8 and result in the locus shown in Figure 2.10.

The relative position of the end points (J1,G1) and (J2,G2) is problem specific; it is not true that

smaller workload leads to worse performance, as Figure 2.10 indicates.

In the general case, there are n pure strategies, as given by Eq. (2.25). Then, the P-W locus

is constructed as follows:

First, the values of (Ji,Gi) for the n pure strategies are determined. This corresponds to

evaluating the performance and the workload for the values of Pk, Eq. (2.27), that correspond to

the vertices of the strategy space. The result is a set of n points in the two-dimensional P-W

space.

Then, the binary variations between each possible pair of pure strategies are considered.

This corresponds to the mapping of the edges of the strategy space. For example, consider pure

strategies Di and Dk: then

D = (1-8) Di + 8Dk

26



for all combinations (ik) where i=l,...,n and k=1,...,n and for which i*k. By varying 8 from 0

to 1, the loci (Jik(5), Gik(8)) are obtained. These are convex lines joining the two boundary

points, as shown in Figure 2.10. These binary loci are quite useful, since they define the

minimum workload locus for any feasible value of J.

J I
I5=

I I
I I

G
Figure 2.10 Performance-Workload Locus for Example

The third step consists of considering, successively, the binary variation between all possible

binary strategies until all mixed strategies are accounted for. The result is a locus such as the one

shown in Figure 2.11 for the case when there are three pure strategies. The corresponding

strategy space, for this case, is shown in Figure 2.12.

G
Figure 2.11 Performance-Workload Locus for the Case of Three Pure Strategies
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831

Figure 2.12 Strategy Space for the Case of Three Pure Strategies

Thus, the decisionmaker model can be considered as a system that maps the strategy locus,

the simplex defined by Eq. (2.27), into the Performance-Workload (J,G) locus. Any change in

the algorithms f or h, or the functions in IF and CI, or the input x will affect the mapping.
In the next chapter, a review of relevant material from experimental psychology is presented

in order to set the stage for the description and analysis of the experimental paradigm.
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3. WORKLOAD AND BEHAVIORAL DECISION THEORY

This chapter presents selected findings and methods from experimental psychology which are

relevant to the analysis and evaluation of C2 organizations; they provide a basis for the

experimental paradigm presented in this report. The issues raised apply specifically to:

(1) modeling the information processing algorithms used by individual

decisionmakers;

(2) evaluating the cognitive workloads associated with these algorithms via the

information theoretic surrogate for workload proposed by Boettcher and

Levis (1982); and

(3) testing, extending, and applying the workload surrogate.

These issues come primarily from three areas. Behavioral decision theory is discussed in

terms of its implications for modeling situation assessment and response selection algorithms.

Cognitive psychology, specifically models of attention, is discussed as it relates to the theoretical

underpinnings of the concept of workload. Finally, literature from human performance is

reviewed in order to assess the state of the art in measurement of workload. Within each of these

areas a few key references are suggested for further reading.

3.1 POTENTIAL CONTRIBUTIONS FROM BEHAVIORAL DECISION THEORY

The behavioral decision literature can be partitioned roughly into three areas: judgment and

decision under certainty, intuitive statistics/heuristics and biases, and decision under risk. These

three areas are described briefly to provide context for the ensuing discussion. Two of the

dominant theories from this literature are suggested as possible means for identifying a broadly
applicable set of possible algorithms for modeling the situation assessment process and response
selection processes. Then, experimental research is reviewed which bears on three issues
relevant to modeling decision behavior in the C3 context. The first issue concerns whether
strategy selection can be predicted from knowledge of the decision maker's risk attitude. The
remaining issues concern two highly salient features of tactical battle management environments:

time pressure and dynamic evolution of scenarios.
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3.1.1 Overview of the field

Behavioral decision theory is the study of how people make judgments about the world and

their own preferences, and how these judgments are combined and compared to make decisions.

The field grew originally out of economics. Its origin is usually traced to von Neumann and
Morgenstern's (1947) axiomatization of expected utility theory. However, cognitive (and social)
psychology has come to play an increasing crucial role in recent years. Each of the field's three
major areas will be discussed in turn and related to the modeling of the individual decision

maker.
Judgment and decision under certainty is the study of how people combine multiple sources

of information into a judgment along a single dimension. This area has been driven by the
information integration theory (not to be confused with information theory) of Anderson (1974;
1983). Although this theory has been used most often to describe judgment under certainty, it is

equally applicable to many judgment tasks involving uncertainty (cf. Anderson and Shanteau,
1970). Information integration theory is discussed below in more detail in the context of

mathematical models of situation assessment.
Intuitive statistics/heuristics and biases deals with simplifying strategies people use for

estimating and revising probabilities and making predictions and inferences. Investigations
typically take the form of comparison of individuals' judgments with normative rules,
particularly probability theory. The standard conclusion is that, because of bounded rationality

and ignorance of normative theory, people use simplifying judgmental heuristics that in some
cases lead to large and systematic errors. Although there is little doubt that these errors are real,

the practical difficulty with this research is that the heuristics that are identified (e.g., availability

and representativeness) are little more than restatements of the phenomena they are intended to
explain. For example, the availability heuristic involves judging the probability of an event

according to the ease with which instances where the event did occur can be remembered. This

heuristic is incomplete; it cannot be substituted for a normative probability model without

additional assumptions. Nonetheless, where situation assessment tasks involving processing or
generating probability estimates are concerned, this research suggests a number of starting points
for algorithmic modeling. See Kahneman, Slovic and Tversky (1982) for a detailed "catalog" of

these heuristics and biases.
Decision under risk is the oldest branch of behavioral decision theory and the branch most

heavily influenced by economics. The seminal work of von Neumann and Morgenstern dealt
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with this branch. Until recently this branch was dominated totally by expected utility theory and

its more complex variants (e.g., Karkarmar's, 1978, subjective expected utility theory and

Kahneman and Tversky's, 1979, prospect theory). Although this lineage of theory has the virtue

of mathematical elegance, numerous empirical demonstrations have cast doubt on the validity of

the underlying behavioral assumptions (see Schoemaker, 1982, for a review). Due to the

influence of cognitive psychology, attempts to model risky decision behavior using algorithms

and empirically based behavioral assumptions have begun to emerge (e.g., Lopes, in press;

Payne, 1982). Such models are called process or procedural models, and, although they

typically deal with greatly simplified tasks, they are easily amenable to modeling via the

workload surrogate.

The ideas to be discussed in this section are by no means all that behavioral decision theory

has to offer the C3 organizational design researcher. Excellent reviews of behavioral decision

theory are provided by Slovic, Fischhoff, and Lichtenstein (1977), and Einhorn and Hogarth

(1981). An excellent and authoritative text is Hogarth (1980). Hogarth's text is narrow in that it

focuses primarily on the cognitive processes of individual decision makers and how pitfalls

(cognitive biases) can be avoided. Wright (1985) is a collection of primarily original papers

which offers a much broader descriptive perspective on decision behavior.

3.1.2 General models of situation assessment and response selection

The theories to be discussed in this section potentially provide general, behaviorally valid

models of situation assessment and response selection processes. These models are most

appropriate for cases in which little context- or task-specific information is available as to what

sorts of algorithms decision makers may actually employ.

Situation Assessment. Information integration theory is a family of simple algebraic

models of how information on various dimensions is combined to produce a judgment on a

single dimension (Anderson, 1974). The input dimensions can be defined qualitatively

(ordinarily) or quantitatively. In a C3 situation assessment context involving aircraft

identification, input dimensions might be speed, direction, and whether radio contact has been

made. The resulting subjective assessment might be likelihood that the aircraft is hostile.

Variations of an averaging model (i.e., average or weighted average) or an even simpler

adding model (i.e., sum or weighted sum) are descriptively accurate in many situations. It is

taken for granted that people do not perform conscious mental arithmetic in order to produce
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averaging judgments. However, a plausible algorithmic model has been proposed that explains

how people might produce judgments consistent with the models (Lopes, 1982). Lopes model

is, to a substantial degree, a model of the heuristics people use to do certain kinds of mental

arithmetic.
Response Selection. Kahneman and Tversky's (1979) prospect theory, despite its

numerous limitations (cf. Schneider and Lopes, 1987), is the most comprehensive and generally

applicable theory of choice behavior (response selection) yet proposed. It is primarily a

mathematical theory in the spirit of expected utility theory. It concerns how probability and value

information is evaluated and combined in order to allow direct comparison between alternative

courses of action or responses. Some of its shortcomings in terms of modeling C3 response

selection are:

(1) alternatives must be defined on two dimensions only (probability and

value) and must, technically, have only two possible outcomes each;

(2) Kahneman and Tversky do not provide a specific equation for their value

function which maps objective values onto psychological values; and

(3) It is not a process or procedural theory; as with information integration

theory, it is assumed that people do not actually execute the computations

the theory suggests.

However, in the case of choice behavior, it is even less clear that the underlying algorithms

resemble the mechanics of the theory in any way.

3.1.3 Individual differences in risk taking

Everyday experience suggests that propensity to take risks is one of the things that gives

people their individuality. Some people seem to seek out risks at every turn, while others try

equally hard to avoid them. If a straightforward method (e.g., a paper and pencil questionnaire)
were available for classifying individuals with respect to risk attitude, this information could be

used to predict what sorts of algorithms a given decision maker is more likely to use in a given

task. For example, given a set of strategies that are equally effective on average, a risk seeker
might preferentially use a "quick and dirty" strategy that offers a chance of an unusually

successful outcome. A risk avoider, on the other hand, might select a safe strategy that
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minimizes the chances of failure.
Despite its tremendous common sense appeal, validating risk attitude as a personality trait has

proved to be quite difficult. Early attempts to develop valid and reliable questionnaire measures

failed (Slovic, 1962). For example, the Choice Dilemma Questionnaire (CDQ) has been a

popular means of measuring risk taking propensity. It was the measure used in the discovery of

well-known "risky shift" phenomenon of group decision making (Cartwright, 1973) and in

many follow-up studies. However, Bazerman (in press) has shown that the CDQ is likely to

show large biases because of the way the questions are framed. It appears that an entire body of

literature was predicated on an invalid risk measure.

A recurring theme in psychological research is that attempts to identify stable traits which

bear out common sense notions about individual differences often lead instead to an awareness of
the tremendous flexibility and adaptivity of behavior. Behavior is determined more by
environmental demands and less by personal traits than people commonly believe. This

discrepancy has been labeled the "fundamental attribution error" (Nisbett and Ross, 1980).

Lopes (in press) has proposed a three part model of risk taking which reflects adaptation to

the situation at hand, while also allowing identification of stable individual differences in risk
taking. According the Lopes model, while nearly everyone is concerned with achieving

outcomes that are at least acceptable in risky decisions (i.e., meeting their aspiration level),

people differ in the weight they place on security and potential. Aspiration level is

situation-specific; it depends upon what the available alternatives have to offer. Security refers to
the probability that a risky alternative will allow the decision maker to avoid a ruinous or very

damaging loss. Potential refers to the probability of "winning big" -- that is, achieving an

outcome much higher than the aspiration level. Most people give more weight to security than

potential. However, a substantial proportion focus on potential, and make correspondingly very
risky choices.

In order to measure risk taking propensity, the Lopes method uses multi-outcome probability

distributions involving money that differ in terms of security and potential, as well as other

factors. Although this method has a firm foundation in psychological theory, it has not been
validated formally as a psychometric test. An additional caveat is that Lopes and Casey (1987)

found situational effects in risk taking that were presumably due to (intra-individual) shifts in
attention to security and potential. Thus an individual's "trait" tendency to take or avoid risk is
modulated not only by aspiration level but by other situational ("state") factors, as well.
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3.1.4 Decision making under time pressure

Time pressure is one of the most salient features of decision making in the context of tactical

battle management. Yet this feature has been all but ignored in the behavioral decision literature.

The reason may have to do with decision researchers' preoccupation with identifying biases in

judgment. This preoccupation is discussed by Christensen-Szalanski and Beach (1984).

Showing that a bias occurs under time pressure is less conclusive evidence for the importance

and generality of the bias than demonstrating that it occurs even when processing time is

unlimited.
Although time pressure is used frequently in investigations of basic cognitive processes

(attention, memory, etc.) this work is even less relevant, because of the highly simplified and

artificial nature of the tasks (e.g., reliance on nonsense syllables as stimuli). The limitations

created by this artificiality are discussed by Neisser (1976). Further, the time pressure is not in
the form of a temporal "window of opportunity." Rather, subjects are given plenty of time, but

instructed to respond as quickly as possible without sacrificing accuracy.

A few studies of time pressure do exist in the behavioral decision literature. These studies
have clear implications for modeling of the situation assessment and response selection

processes. The general conclusion of these studies is that, under time pressure, people process

only a portion of the information they would process normally. Further, they filter the

information, so that the information that is processed is more important than that which is not

processed (Ben Zur and Breznitz, 1981; Wright, 1974; Wright and Weitz, 1977).
Hogarth (1975) proposed a general mathematical model for predicting how decision makers

select decision strategies when faced with multi-attribute alternatives. According to this model,

the decision maker selects the strategy which offers the optimal trade off between the cost of

decision time and the cost of errors. This model attempts to explain the counter-intuitive

empirical finding that less difficult decisions do not always take less time. It appears that this
model could be modified to reflect the impact of a temporal window of opportunity on the cost of

decision time. A model of this type might be useful in defining the probability distribution over

possible strategies as a function of the degree of time pressure.
The most sophisticated work to date in the area of decision behavior under time pressure was

conducted by Payne and colleagues (Bettman, Johnson, and Payne, 1986; Payne, Bettman, and

Johnson, 1986). This research has a number of points of tangency with C3 research.

First, these researchers proposed and tested experimentally an objective measure of cognitive
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effort. This measure bears a closer resemblance to the workload surrogate of Boettcher and

Levis (1982) than any other popular method. Effort is estimated as the sum or weighted sum of

the elementary informaion processes involved in executing an algorithm. This approach is in the

tradition of Newell and Simon (1972). Elementary information processes are READS,

ADDITIONS, COMPARISONS, PRODUCTS, DIFFERENCES, and ELIMINATIONS. This

approach was shown to predict response time more accurately than several alternative methods.

The authors conclude that "...these results imply that a small number of simple operators can be

viewed as the fundamental components from which decision rules are constructed" (Bettman et

al., 1986 p. 35).
In testing the predictions of the elementary information processes method, Payne and

colleagues faced a problem similar to that faced in testing the workload surrogate (see Louvet,

Casey, and Levis; 1988). That is, it was necessary to constrain the decision strategies used by

experimental subjects. Toward this end, they employed an IBM PC-based information

acquisition system which is generally available. This system, called "Mouselab", presents

information displays from which subjects can access individual pieces of information using a

mouse. The information acquisition process can be controlled or monitored precisely, in order to

reduce the range of possible strategies or infer what strategies are being used. For example,

Bettman et al. trained subjects to use six different strategies. For the actual experiment, subjects

were told for each set of trials which strategy to use. The software permitted subjects to use only

this strategy; errors in adherence to the strategy were signaled to the subject and recorded for later

analysis.

The Payne et al. study is quite unique in that shifts in strategy as a function of time pressure

and other task variables were monitored in real time. In this study, subjects were permitted to

use whatever strategy or strategies they desired. Some of the major results were that, under

moderate time pressure, subjects processed less information and processed it at a higher rate.

Under severe time pressure, qualitative shifts in decision strategies also occurred. Adaptivity to

task characteristics increased with experience. Payne et al. concluded that people have a

repertoire of heuristic strategies available to them and that, using knowledge of the task structure

and the degree of time pressure, they are able to choose heuristics which are acceptable in terms

of effort (workload and timeliness) and accuracy.
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3.1.5 Dynamic evolution of decision tasks

Another feature of C3 environments which is missing from most behavioral decision research
is their dynamic nature. Hogarth (1981) argued persuasively that this omission has led to a
number of erroneous conclusions about human' ability to cope in complex environments.
Perhaps many of the judgmental biases found in static tasks are irrelevant to dynamic C3 tasks in

which outcome feedback is available.
Two interrelated difficulties are responsible for the failure of most researchers to deal with

dynamic tasks. From the experimental side, the difficulty is in inferring clear-cut cause and
effect relationships when multiple variables are changing from trial to trial. From the systems
modeling side, the difficulty is the intractability of modeling the complex interactions and
interdependencies among variables. However, some theoretical progress has been made in this

direction (Hall, 1982).
Several lines of behavioral research exist concerning dynamic decision making. Although the

findings are quite interesting, adequate mathematical models of the tasks do not yet exist. One

crucial issue which arises in dynamic, but not in static tasks is that of whether to seek and assess
information before taking action or "shoot first and ask questions later." Kleinmuntz (in press)

distinguished between action- and judgment-oriented decision strategies. In a simulated medical
decision making task, he found that novices performed poorly because of being too
judgment-oriented. In contrast, actual medical practitioners are relatively more action-oriented.
This finding is important, because it bears directly on the issue how much effort (workload) is
expended on situation assessment versus response selection. If Kleinmuntz' finding generalizes
beyond medical decision tasks, one would expect that, whenever practicable, experienced
decision makers would rely more on trial and error and less on thorough situation assessment.

Hogarth and Makridakis (1981) used a complex management simulation game to compare the

performance of teams of management students with baselines provided by simplistic rules. They
made a number of suggestions concerning how to analyze decision making behavior in a

dynamic, competitive environment in which the degree of experimental control is very limited.
For example, they compared team performance to the performance of a simplistic but consistent

algorithm and a random algorithm.
Lopes and Casey (1987) examined situational influences on risk taking. Subjects played a

dynamic game against an opponent or computer. Subjects showed "tactical" shifts in risk taking
(i.e., they took less risk when they were near victory and more when they were on the verge of
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loss), but not "strategic" shifts (i.e., they did not adapt properly to offensive versus defensive

roles). Some subjects' risk attitudes were such that they were well-suited for a defensive role,

while other subjects risk attitudes were better suited for an offensive role. To the extent that

these results are general, the implications for assignment of tasks to individuals in the design of
C3 organizations is clear.

Awareness of phenomena and methods from behavioral decision theory should increase the
practical usefulness of the workload surrogate by suggesting what sorts of algorithms are more

or less likely to be used by decision makers as a function of certain task characteristics and,

perhaps, as a function of individual characteristics such as risk attitude. The discussion now
turns to work in cognitive psychology and human performance that may suggest directions in

which the workload surrogate could be profitably extended. Specific alternative workload

assessment techniques are discussed which may provide benchmarks against which the workload

surrogate can be compared in order to identify some of its strengths and weaknesses.

3.2 THE CONCEPT AND MEASUREMENT OF WORKLOAD

This section reviews the current status of cognitive workload as a psychological construct

and the resulting implications for accurate measurement of workload. The three major classes of

workload measurement techniques (subjective measures, secondary task measures, and

psychophysiological methods) are treated. The concept of workload is evaluated from a

cognitive psychological perspective. The general approaches embodied in subjective and

secondary task measures are then evaluated critically with respect to their psychological and

psychometric validity. Finally, practical recommendations for applied workload measurement

are made for each of the three classes of measures. The objective is to highlight the state of the

art in workload theory and measurement, rather than to provide a comprehensive review. It is

hoped that the issues raised herein will facilitate testing and extension of the workload surrogate.
A recent chapter by Gopher and Donchin (1986) provides an extensive review of the concept

of workload and its implications for workload measurement. Gopher and Donchin are concerned
intimately with the theoretical status of the concept. That is, does there actually exist a

psychological construct or variable that corresponds to "workload?" Which psychological
theories render the existence of this construct plausible? What experimental data are available to

allow discrimination between theories under which the construct is valid versus those under
which it is not? The discussion that follows has been guided (albeit loosely at some points) by
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key issues raised by these authors.

3.2.1 Workload as a psychological construct

Evaluation of the psychological underpinnings of the workload concept necessitates

consideration of models of information processing from cognitive psychology. Particularly

relevant are models that address attentional and short term memory limitations. Such models,

especially early ones, have made more or less precise use of the concept of communication

channels.

Single channel or "bottleneck" models of attention are highly compatible with the workload

concept. According to a single channel model, performance breaks down when the channel's

capacity is exceeded. However, evidence for parallel processing, including semantic processing

(determination of meaning) of supposedly unattended information, forced researchers to

postulate that information is sometimes processed symmetrical in parallel before it reaches

consciousness. The contention then is that conscious processing is always carried out serially.

The resulting model is one in which there is a muti-channel to single channel bottleneck which is

sometimes located at an early stage in the processing sequence and sometimes located at a later

stage. The former situation is referred to as "early selection" and the latter "late selection."

Such a malleable model is of little help in developing a simple concept of workload. Its

major contribution is that it points to the importance of task characteristics in determining

workload. A task which induces late selection will result in a smaller workload than a

comparable task which requires early selection.

One way of determining at what stage of processing filtration will occur in a given situation is

to identify whether the operator is using controlled or automatic processing. The discovery of

the controlled versus automatic distinction has been one of the major contributions of cognitive

psychology (see Schneider, Dumais, and Shiffrin, 1983, for a review). Two features set the

stage for automatic processing: (1) constant mapping between stimuli and responses, and (2)

extensive practice in doing the task with this mapping. Automatic processing is done in parallel,

is not limited by short term memory, and requires little conscious effort. In contrast, controlled

processing is much slower, is limited by short term memory and is relatively effortful. The

kinds of decision tasks that are of practical interest tend not to meet completely the consistent

mapping requirement of automatically. However, in modeling workload, it may be possible to

partition a task into subtasks, some of which permit automatic processing and some of which
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require controlled processing. In a less fine-grained analysis, the workload of automatic

processes could be assumed to be zero. Then, only the subtasks requiring serial controlled

processing would need to be modeled.
More recently, attentional limitations have been conceptualized as resulting from demands on

multiple, somewhat independent, "resources." According to this view, separate processing

resources are available for encoding, deciding (central processing) and responding. Within each

of these stages, basically two resources are available. Separate resources are used for encoding

visual versus auditory information, processing spatial versus verbal information and for making

manual versus vocal responses. In this framework, it is implicit that workload depends in large

part upon the degree of competition among tasks or subtasks for a single input modality, type of

decision operation, stage of processing, or response mode (Wickens, 1984).

3.2.2 Implications for workload measurement

It is clear from the above discussion that the concept of workload as a single, unidimensional

psychological quantity is on shaky footing. That is, its construct validity is questionable. And,
unfortunately, the present state of progress in models of attention and cognitive resource

allocation is such that a well-defined, psychologically sound alternative does not yet exist. The
next line of attack for the pragmatist in search of a measurement technique having some scientific
basis, would be to identify a technique for which statistical validity and reliability have been

established. However, Gopher and Donchin paint a discouraging picture of existing techniques
with respect to these criteria, as well. In the two subsections that follow, two of the general

classes of workload measurement techniques, subjective and secondary task measures, are

evaluated with respect to their psychological and psychometric validity. Discussion of

psychophysiological measures is postponed until the section concerning practical

recommendations for workload measurement.

Subjective measures are those which require operators to report, usually via a paper and

pencil questionnaire or rating scale, their level of workload. Measures of this type are usually

administered immediately after performance of a task. Unfortunately, in terms of theoretical

considerations, this family of methods falls short in several respects, including lack of proper
psychometric validation, limitations on operators' degree of conscious awareness, limitations on
memory of the level of workload, and poor correlation with objective performance.
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The typical criterion for acceptability of subjective measures has been that they exhibit "face
validity." In other words, the measure is valid if the questionnaire items appear subjectively to

be relevant to workload. Psychometrics generally agree that face validity should play some role

in the evaluation of a measuring instrument, if only because it impacts directly upon user

acceptance. However, objective criteria must be the primary means of evaluation of the

instrument. O'Donnell and Eggemcier (1986) offer a practical and balanced set of criteria for

choosing between existing workload measures. These criteria are sensitivity, diagnosticity,

intrusiveness, implementation requirements and operator acceptance. Of these, only operator

acceptance bears a clear connection to face validity. O'Donnell and Eggemeier point out that, as a

result of the lack of concern with psychometric theory, there has been little standardization of

subjective workload measures.
A potentially more serious problem inherent in subjective measures stems from the fact that

most cognitive work is carried on outside the realm of conscious awareness. Presumably,

people are not able to report on the workloads of processes of which they are unaware. For
example, automatic processing is apparently neither accessible to awareness nor under conscious

control; the individual may be aware of the stimulus and usually has control over the overt
response, but cannot direct the intervening process. Although subjective measures should be

appropriate for tasks calling primarily upon controlled (serial, limited capacity) processes, an

experienced operator performing a well-defined task (as is typically the case in tactical battle
management) is likely to make extensive use of automatic processing.

A striking feature of the cognitive psychological literature is that consciousness is ascribed a

minimal (or no) role in most theories. This reflects the growing realization that awareness is but

a small window on the whole of cognitive activity. Unless one is willing to assume that

processing limitations are associated uniquely with conscious processing, and that all other

cognitive activity is carried out by massively parallel structures, then use of subjective workload

measures as the sole source of workload information is inadequate.

Even if the operator is aware of the level of workload during the task, additional processing
resources are required to store this information for retrieval in response to the workload

questionnaire. Thus the retrospective nature of subjective measures may introduce errors either

because the operator has inaccurate memory of the level of workload, or because having to

encode workload information changes the workload or the relationship between workload and

performance. It is easy to imagine that the accuracy of subjective reports of workl 'ad may be
quite high when workload is low and plenty of spare processing capacity is available to monitor

40



and store workload information for later recall. However, when the operator is pushed to the

limit, accuracy of subjective estimates may drop drastically (perhaps, in the direction of

underestimation) due to lack of capacity to process workload information. It has been

demonstrated that, when short term memory is heavily loaded, it is possible to encode specific

information and yet forget about the entire episode within a few seconds; it takes effort to

maintain information in short term memory and additional effort to transfer it to long term

memory. If, alternatively, sufficient resources continue to be allocated to workload information

despite increased task demands, performance may deteriorate with increasing workload at an

artificially low level of workload.

A final shortcoming of subjective measures is one that is not surprising in light of the above

arguments: subjective measures are often found to correlate poorly with actual performance.

Thus the seemingly trivial assumption that performance will tend to drop as workload is

increased from a moderate to a high level is often difficult to confirm when workload is measured

subjectively. If subjective measures of this sort are nonetheless assumed to tap something

psychologically real, this result may pave the way for designing tasks such that operators

perform extremely well, but feel that the task is easy. However, the goal of the current

organizational design effort is to be able to structure individuals' decision making roles within

the organization such that performance (at the organizational level) is acceptable and individuals'

cognitive resources are not overtaxed. If this goal is to be achieved, having a workload measure

which is sensibly related to performance is of paramount importance. This issue is the focus of

the Louvet et al. (1988) paper.

Secondary task measures. The rationale underlying the secondary task approach to

workload measurement is that increases in the workload of a primary task should be reflected in

decreased performance on a concurrent secondary task. Subjects in secondary task experiments

are instructed to maintain performance on the primary task at a high level, even if it means

sacrificing performance on the secondary task. The assumptions underlying this approach are:

(1) both tasks draw upon a single, fixed "pool" of processing resources

(basically, a single fixed capacity channel);

(2) the two tasks compete only for central processing resources, not for

peripheral channels -- that is, ability to perform the tasks concurrently is

not determined primarily by perceptual or manual limitations;

(3) performance is more or less inversely related to amount of effort
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(workload) allocated to the task, so that secondary task performance will

vary inversely with the workload of the primary task (assumptions 1 and 2

seem to be necessary, but not sufficient to ensure that this assumption is
met);

(4) operators are able to adjust fairly optimally the amount of effort expended

on the secondary task as the workload of the primary task is varied; and

(5) the dual task workload is equal to the sum of the workloads for the two

tasks when performed separately; that is, the workload of the
"meta-processing" necessary to divide effort between the two tasks is

insubstantial and the two tasks cannot be "weaved together" in any way to

decrease overall workload.

None of these assumptions, other than perhaps (3), are met strictly. Regarding (1), as

discussed above, current conceptions of attention implicate multiple pools of resources. it has

also been suggested that the pools themselves shrink and expand under certain circumstances.
Assumption (2) can be dealt with by attempting to select a secondary task that is complementary

to the primary task in terms of its peripheral requirements. However, the need to select a

secondary task in this way eliminates the possibility of a single, standard secondary task. Also,
largely because of peripheral compatibility considerations, the kinds of tasks that are typically

employed in secondary task experiments are rather contrived. For example, in an experiment
reported by Gopher, Brickner, and Navon (1982), subjects used a tracking controller in one

hand to track a target which moved randomly about a CRT screen. Subjects used the other hand

concurrently to make keypress responses to letters superimposed on the target. Assumption (4)

is also quite problematic, since dynamic judgments about resource allocation are an explicit part

of the task.
To deal with assumption (5), Gopher and Donchin advocate use of a method based on

performance operating characteristics (POC). This method is not tied to any particular
combination of primary and secondary tasks, so long as the combination meets assumptions

(1)-(4). A POC is an empirically derived curve which is a "performance trade-off function that

describes the improvement of performance on one task due to added resources released from
lowering the standard of performance on another task with which it is time-shared" (p. 41-28).

This method, in effect, factors out subjects' inability to set and maintain a certain division of

effort between the two tasks. This is a variant of a technique used in many areas of experimental
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psychology (see Green and Swets, 1966). The underlying theory is generally considered to be

quite sound. However, the method requires much more complicated experimental designs and

many more observations than other methods of measuring workload. This is because the entire

experiment must be repeated a number of times (at least four or five) with different trade-off

instructions in effect. Gopher and Donchin contend that this extra effort is well spent.

The combination of assumptions (2) and (5) makes development of the design and procedure

for secondary task experiments potentially quite tedious. Seemingly subtle and inconsequential

aspects of the experimental arrangement may affect whether these assumptions are met and

thereby influence in an unpredictable manner the pattern of results. Extensive pilot work is

necessary to ensure that these assumptions are met and to be able to counter alternative

explanations of the results in terms of assumption violations.

3.2.3 Selection of practical workload measures

In this section practical recommendations are made concerning how to identify the

appropriate workload measurement technique for specific applications. These recommendations

are based largely on a comprehensive review by O'Donnell and Eggemeier (1986). These

authors discuss a number of state-of-the-art methods from the human factors literature. Methods

are evaluated with respect to five criteria. These are sensitivity (ability to discriminate variations

in workload), diagnosticity (ability to identify the source of workload or "bottleneck" within the

operator), intrusiveness (tendency of the workload measure to change the task and workload),
implementation requirements (instrumentation needed), and operator acceptance.

Subjective measures. In general, subjective measures are recommended for ease of

implementation (i.e., no specialized apparatus or training is needed), non-intrusiveness (i.e., the

measures are typically administered post hoc) and, to some extent, sensitivity. The most widely

used subjective measure, and the only one which has been subjected to rigorous tests of validity

and reliability is the Cooper-Harper scale. This scale was originally developed to measure

aircraft ease of handling. However, a more general version of the scale was developed by
Wierwille and Casali (1983). This version is applicable to a wide range of systems operation

tasks and has been experimentally validated. High correlations with factors affecting objective

task difficulty are typical. Notwithstanding the criticisms discussed above that apply

categorically to subjective measures, this scale scores favorably in terms of all of O'Donnell and

Eggemeier's criteria with the exception of diagnosticity. Subjective measures, including the
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Cooper-Harper scale, generally do not permit discrimination between workload due to, for

example, central processing versus motor (manual) or perceptual limitations. Therefore, if

cognitive workload is the variable of interest, it is essential that the task be designed so that

manual workload is relatively small. Operators cannot be relied upon to report only the degree of

cognitive workload.

In addition to rating scales, a number of psychophysical measurement techniques are

available for eliciting subjective judgments of workload. These methods are not based on any

underlying theory of the nature of human information processing or workload. Rather, they are

based on axiomatic measurement theory. This class of methods has a long history in
psychophysics and has been used in a myriad of contexts. These methods include:

(1) Magnitude estimation: The operator is given a standard or reference task of

intermediate difficulty and instructed that the workload associated with this

task is, say, 10. Additional tasks, chosen to vary in terms of workload,

are then administered and the operator assigns values to these tasks

according to the ratio of difficulty of each task to the standard. For

example, a task twice as difficult as the standard would receive a value of

20.
(2) Paired comparisons: Two tasks are presented serially and the operator is

asked to judged which had the higher workload. All possible pairwise

combinations of the tasks of interest are presented. The workload for any

given task is the proportion of occasions on which it was judged to have

the higher workload.

(3) Conjoint measurement: This rather intricate technique involves identifying

the task attributes and levels that contribute to workload, having operators

rate the workload associated with each and every possible combination of

attribute levels, analyzing these ratings for consistency with the set of
measurement axioms, and, finally, finding a model which accurately

predicts workload ratings given the levels of the attributes.

The subjective workload assessment technique (SWAT) represents a specific implementation

of conjoint measurement. SWAT assumes that three attributes, time load (amount of spare

time), mental effort load (degree of concentration) and stress load (strength of feelings of
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confusion, risk, frustration, anxiety) make up workload. Operators rate tasks on a one to three

scale for each of the three attributes. Whenever the conjoint measurement axioms are met,

SWAT performs well on all five of the above criteria, with the exception of diagnosticity.

SWAT requires specialized software for axiom testing and model fitting.

Unlike scales of the Cooper-Harper variety, techniques based on measurement theory require
operators to initially make large numbers of judgments. As a result, these techniques may be
impractical outside the laboratory. There is also a risk that subjects will not make considered
judgments when so many repetitive and similar judgments are required (Crozier, 1978).
Relatively more information may be gleaned from a few carefully considered judgments.

Nonetheless, this family of techniques offers the benefit that, if the attributes are chosen correctly

and the axioms met, the resulting workload estimates are certain to be valid.
Secondary task measures. A variety of secondary task procedures have been shown to

provide valid measures of the workload of the primary tasks with which they have been paired.
However, as discussed above, the secondary task approach makes several assumptions about the

relation between the primary and secondary tasks. As a result, it seems to be fundamentally
impossible to identify a single, universally appropriate secondary task. In the literature, primary

and secondary tasks typically come as inseparable packages. In order to fit an appropriate

secondary task to a predefined primary task of interest, it is necessary to consider a number of
different procedures and identify one which can be modified easily to meet the requisite
assumptions. Specific secondary tasks suggested by O'Donnell and Eggemeier include tracking,
monitoring, memory, mental mathematics, shadowing, simple reaction time, and time estimation.
In terms of the five criteria for evaluating workload measures, secondary task measures can be
highly sensitive and diagnostic. However, they tend to be quite intrusive, require painstaking

implementation and, usually, some specialized apparatus or software. Operator acceptance is of

greater concern for secondary task measures than for subjective measures.
Psychophysiological measures. Psychophysiological measures can be classified as

relating to either brain, eye, cardiac, or muscle function. Typical measures are event [stimulus]

related brain potentials (ERP) such as P300, papillary response, heart rate variability, and

surface electromyographic signals. A serious difficulty with nearly all psychophysiological
measures is that they are sensitive to all sorts of physiological and even psychological variables,

many of which do not necessarily correlate with workload. Because of this broad spectrum
sensitivity, these methods tend to be low in diagnosticity and sometimes low in sensitivity.
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The psychophysiological measure which appears to be the most sensitive and diagnostic is

that based on ERP and the P300 component in particular. Gopher and Donchin (1986), in fact,

limit their discussion of psychophysiological measures to P300. P300 is measured by

processing of the outputs of electrodes attached to the scalp. The P300 amplitude is affected by

the degree of task relevance and the degree of unexpectedness of the stimulus (i.e., the stimulus

probability). It appears sensitive only to the stimulus evaluation process and not to the response

process. The latency of the P300 (time lag between stimulus and P300 signal) reflects the time

taken to perceive and evaluate the stimulus.

The usefulness of P300 for measuring workload comes from the finding that the magnitude

of the P300 elicited by a secondary task decreases as the difficulty of the primary task increases.

Some evidence even exists that the P300 evoked by primary task stimuli reflects overall

workload. A major advantage of this method is that it is not contaminated by any competition or

interference which may occur between the two tasks at the response stage.

A disadvantage of the P300 method is that it seems to require most of the same assumptions

as the secondary task method. In addition, the effect of inwardly directed attention -- workload

in the form of higher order analysis and decision making -- on P300 is not immediately clear.

This component of workload can vary somewhat independently of the external attentional

demands imposed by stimuli. Loosely put, at issue is whether P300 comes before or after

response selection.

In order to ensure low intrusiveness and high operator acceptance of psychophysiological

measures, it is necessary that subjects be fully accustomed to the measuring equipment, before

actual experimental data are collected. All of the methods require specialized apparatus. Some

methods, including the P300 method, require signal processing apparatus and/or software.

Lest the many shortcomings and limitations of the various approaches to workload

measurement be taken as overly discouraging, it is essential to bear in mind the broad magnitude

and scope of the workload researcher's task. In many applied contexts, the practical benefits to

be reaped from a workload measure which accounts for even a modest portion of the variance in
"true" mental workload are immense. For several of the methods discussed herein, as well as the

workload surrogate presented in Chapter 2, this goal appears to be well within reach.
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3.3 CONCLUSION

In the context of the ongoing organizational design effort, it is necessary to have the

knowledge required to assign tasks to organization members in such a way that full advantage is

taken of their information processing abilities without inducing an overload state. Toward this
end, the organizational designer must have knowledge of how task characteristics (e.g., time
pressure and dynamic evolution of scenarios) affect irdividuals' information processing and
decision making strategies. In addition, large and stable differences in rate (or strategy (e.g.,

risk seeking/avoiding) of information processing need to be taken into account A valid measure
is needed to provide a quantitative assessment of task workload and what constitutes an

information processing overload.
The purpose of this chapter has been to bring to bear on these issues important empirical

results and methods from experimental psychology. In the following chapter, an experiment will

be described that has been used to evaluate the workload surrogate of Boettcher and Levis (1982)

in terms of the validity of its psychological foundations.
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4. EXPERIMENTAL METHOD

4.1 INTRODUCTION

In the experimental psychology and behavioral analysis literature, one may find two

different approaches which may be related to the concept of human bounded rationality:

decisionmaking under time pressure, discussed in Chapter 3, and the Yerkes-Dodson 'law'.
Considerable experimental psychological work has examined the influence of arousal on

performance in various types of tasks. Figure 4.1 shows the relationship between arousal and

performance called the Yerkes-Dodson 'law'. This relation is shown when arousal is varied over

an extremely wide range. Arousal is influenced by a variety of factors including cognitive

workload. At very low arousal, performance is low due to boredom and vigilance limitations.
At very high arousal, performance is also low, but it is then due to stress and sensory overload.

In a well designed organization, all decisionmakers should be operating near the top of the curve.
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Figure 4.1 The Yerkes-Dodson Law.

Decisonmaking under time pressure, however, has been given very little attention; only a

few studies have been reported in the behavioral decision litterature (Ben Zur and Breznitz,1981;
Wright, 1974; Wright and Weitz, 1977). The general conclusion is that people under time

pressure process only a portion of the information that they would normally process. Further,
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they filter the information so that what is processed is more important than what is not processed.
These conclusions are used as assumptions when modeling the task in the experiment. Time
pressure is one of the most significant features of decisionmaking in the context of tactical battle

management (Cothier, 1984).
In the information theoretic model, it is assumed that simple information processing tasks

are performed with little error when both the rate of information processing imposed by the input

interarrival rate is low and the decisionmaker is not bored. As the input interarrival rate

increases, the decisionmaker increases his information processing rate. If the information rate
increases further still, a point is reached when the decisionmaker may not increase their
processing rate anymore: the decisionmaker is overloaded and his performance decreases

significantly. The degradation of performance and the decisionmaker's coping strategies are not
statistically predictable and may take many forms. Examples of coping strategies may be
ignoring entire inputs, simplifying me algorithms used to give less accurate responses,

etc.(Miller, 1969).
The notion that the rationality of a human decisionmaker is bounded has been modeled as a

constraint on the total activity G, see Eq. (2.20). Equation (2.20) may be rewritten using the
DM's average processing time t as

-.. <P (4.1)
c2

For values of t sufficiently small, noted 'tmin, the time t required to process the task with

acceptable accuracy will equal the lapse of time between two inputs, and the inequality in (2.20)
will become an equality described as:

G = Fmaxzmin (4.2)

where

t per input = ;,min (4.3)

and Fmax is assumed to be the maximum information processing rate, and t the minimum time
required to perform the task with the desired accuracy.
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The bounded rationality constraint assumes that if the processing rate Fma is exceeded,

perforce will drop significantly in an unpredictable manner. Equation (4.2) may be rewritten

as:

Fmax -G / ter input (4.4)

where the different quantities have already been described above.
From Equations (4.2) and (4.4), it is apparent that for the purpose of investigating the

behaviour of the bounded rationality constraint, the maximum information processing rate is a
function of three different parameters: the total activity required to perform the task, noted G, the
input signal interarrival time, noted z, and the minimum time required to process the information
and perform the task with the desired level of accuracy, noted t. These conclusions have a
significant impact when considering the design of experiments which will be described in the

next section.
The existence and the behaviour of the bounded rationality constraint were tested with the

experiment described in the next section that was carried out at the MIT Laboratory for
Information and Decision Systems. First, the relevant parameters are characterized in section
4.2. Then, the experimental procedures are reviewed in section 4.3. Finally, the purpose of the
task constraints and the experimental setup are explained in sections 4.4 and 4.5.

4.2 THE PARAMETER TO MANIPULATE

The information processing rate F has been described in Chapter 2 as being a mathematical
function of three different parameters, the cognitive workload required to perform the task, the
minimum time required to perform the task for a given level of accuracy, and the input signal
interarrival time (see Equations (4.2) and (4.4)). When considering the maximum processing
rate Fmax is considered, these three parameters may be reduced to two, since the assumption is
that when Fna x is reached, the input interarrival rate is equal to the minimum processing rate. As
a result, the parameter "time" may be considered as the time allotted to perform the task, also
called the window of opportunity. Therefore, two different approaches may be used to study
Fmax. One may manipulate the cognitive workload (G) while the other the time allotted to

perform the task (t).

50



The effect of the bounded rationality on performance as a function of workload or time

allotted per trial has been described as a step function (see Figures 4.2 and 4.3.). Performance

is stable until the maximum amount of information processing is reached. Then performance

drops at or under chance level. The step function represents an instantaneous decrease in
performance. It is assumed however, that human decisionmakers will not behave in such a rigid
way; when F.. is reached, performance will decrease significantly but more smoothly than the

step function.
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Figure 4.2 Performance as a Function of Workload

The first approach consists of varying the amount of cognitive workload while keeping the

time allotted to perform the tasks constant. For a given t, the critical cognitive workload G*
associated with Fmax is measured experimentally as the workload after which performance

decreases significantly. The second approach consists of varying the time allotted to perform the

task while keeping the workload constant. For a given task, the critical time t* associated with

Fmax is measured experimentally. The total activity G, associated with the task is computed

analytically using the information theoretic model.

Manipulation of the task processing time is simpler to monitor and control under
experimental conditions than manipulation of workload. In particular, time is a continuous

variable whereas the workload associated with different tasks takes discrete values and needs to

be assessed analytically. Therefore, the time allotted per trial was the manipulated parameter.
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Figure 4.3 Performance as a Function of Interarrival Time

4.3 EXPERIMENTAL PROCEDURE

This work is only the first in a series of experiments, therefore the simplest decision making
organization was simulated: the organization was reduced to a single decision maker. Since little
was known about the experimental aspects of estimating the bounded rationality constraint, the
task was designed so that the factors which were affecting the subjects' performance could be
monitored as precisely as possible. The task was also chostn o that the subjects could become
'well trained experts' with reasonable amount of training, thereby satisfying the requirement that
the decisionmakers' performance did not benefit from the learning effect during the experiment.

4.3.1 Experimental Conditions

The experiment consisted of a highly simplified tactical air defense task. It was run on a
Compaq Deskpro Model 2 equipped with an 8087 math coprocessor, monochrome graphics card
(640 X 200 pixels), 640K of memory, and monochrome monitor. The experiment was
programmed in Turbo Pascal version 3.01A. The operating system was MS-DOS version 2.11.
It was also run on an IBM PC AT with the 80287 math coprocessor and with 640K of memory.
None of the high resolution graphics capabilities of the AT were used so that the experiment be

portable to a wide variety of PC compatible machines.
The computer screen shown in Figure 4.4 consists of three different parts: A large circle, a
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small circle and a rectangular box. The large circle represents a radar screen. The small circle
represents the clock which shows the time allotted for the trial as well as the amount of time left

to perform the task. The rectangular box on the left of the screen and full of 'domino ' shaped
rectangles, shows the number of ratios used for the given trial (four in this example) and the

number of ratios still to be processed (two in this case). The keyboard was used to enter the

subjects' responses.
The experiment consisted of blocks of trials. A trial consisted of either four or seven

threats that were to be processed by the decisionmaker within the allotted time shown by the
clock. Within each block of trials, the number of ratios was constant and the time allotted per
trial was varied in alternating descending and ascending order. Each block of trials was

seperated by a longer pause and flashing to indicate that the number of ratios was changing.
For each threat, two pieces of information were presented as a ratio of two two-digit

integers: relative speed and relative distance from the center of the screen. The distance was in

the numerator and the speed in the denominator. Therefore, each ratio represented the time it
would take the threat to reach the center of the screen. The subject's task was to select the threat
which would arrive first at the center of the circle in the absence of interception. The task can be

interpreted as one of selecting the minimum ratio.
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Figure 4.4 The Screen Display Used in the Experiment
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For each trial, only two ratios were identifiable and present on the radar screen at the same

time. The other ratios were shown on the side of the screen by the 'domino' shaped rectangles.

Such a procedure forced the DM's to process ratios in pairs.

The ratios appeared only on the vertical or horizontal diameter of the radar screen, and the

physical distance of each ratio from the center was proportional to the distance of the ratio as

indicated by the numerator. Thus ratios appeared in one of four regions: left, right, above, or

below the center. Each ratio was randomly assigned to one of these four regions, subject to the

constraint that no two ratios appeared in the same region at the same time. For each pair of ratios

in a given trial, the subject indicated his or her choice by pressing one of four arrow keys
corresponding to the direction of the ratio from the radar screen's center. The ratio chosen as

smallest was retained on the radar screen, the other vanished, and the next ratio to be processed

was taken from the small rectangle's area and placed on the radar screen. This procedure was
repeated until all ratios of the trial had been examined. Row(s) of small rectangles to the left of

the radar screen indicated the total number of ratios for the current trial and the number yet to be

examined (see Figure 4.4). Each time a new ratio appeared on the radar screen, one of the

rectangles turned grey and the numbers within that rectangle disappeared. The subject could not

give a final answer until all the ratios had been examined, (three comparisons for four ratios and

six for seven). The arrow keys were located on the numeric keypad of the keyboard and were

arranged isomorphically with the four regions of the radar screen.

Performance feedback was provided at the end of the trial. When a trial was finished on

time, only one ratio remained on the screen at the end of the trial. If this ratio was in fact the

smallest, it "flashed" several times to indicate a correct response. If this ratio was not the

smallest, a low-pitched tone signalled the error. This tone (which subjects reported to be

particularly obnoxious) was used to discourage subjects to use guessing as a strategy. When a

trial was not finished on time, the screen vanished so the subject knew he had not answered

within the allotted time.

4.3.2 Manipulation of Task Interarrival Time

In usual information theoretic setups, it is assumed that the inputs are emitted by one or

many source(s) at a mean symbol interarrival time noted T. In this experiment, to test the

existence of the bounded rationality constraint, the average interarrival time is not held constant,
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but is varied. However for easier control of the experimental parameters, the time allotted to
perform the task (noted t) is monitored, not the interarrival time.

The amount of time allotted for each trial was shown by the fixed clock hand (see Figure
4.4). A moving second hand (running clockwise from twelve o'clock) indicated elapsed time
within a trial. A one and a half second pause prior to the start of each trial allowed subjects to see
how much time was allotted. The fixed hand flashed during this interval. Time allotted per trial
was varied in alternating descending and ascending series.

One of the questions which were to be answered by this experiment related to the stability of
Fmax across tasks, if it could be shown that Fma existed. Two different numbers of ratios were
selected to investigate this issue. Therefore one of the questions was

= G 7 (4.5)
t*(4) t*(7)

This issue raised another question: When considering the measurements of time allotted per trial,
should the time allotted per trial be considered or should the average time allotted per comparison
for each trial be considered?

One of the hypotheses was that because of the task setup which only allowed the subjects to
consider two ratios at the same time, the cognitive workload required to process the four ratios
was approximately twice that required to process trials of seven ratios. In one case three
comparisons were required whereas in the other six comparisons were required, and it was
assumed that the same algorithmic structure was repeated for each comparison. Equation (4.6)
shows the workload for one comparison, whereas Equation (4.7) shows it for two
comparisons.

k

GI = H(x l ) + H(wi ) + H (y1 ) (4.6)
i=l

k 2k+1

G2 = H(x 2) + F H(wi ) + I H(w i) + H (Y2) (4.7)
i=1 i = k+1
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where x1 is the input variable and Y, the output variable for one comparison, and x2 is the input

variable and Y2 the output variable for two comparisons, and there are k internal variables noted

wi for each comparison.
Assuming that the workload per comparison was approximately the same for four and for

seven ratios, if it were proved experimentally that the minimum average time allotted per

comparison was not significantly different for four and for seven ratios, then Fmax for both

numbers of ratios should be assumed to be not significantly different. Therefore, it was decided

that the parameter which should be monitored was the average time allotted per comparison

which will be noted T, rather than the time allotted per trial which was noted t. T may be

expressed as a function of the number of comparisons m within a given trial as follows:

T= t/m = t/n-I (4.8)

where n is the number of ratios. To study the variations between trials of three and trials of six

comparisons, the average time per comparison was set to be the same for both types of trials.

(Assuming Fmax exists, the time threshold associated with Fmax would be derived from the

experimental results, and noted T*3 for three comparisons and T*6 for six.)

The experiment was also constructed to minimize the influence on performance of time

required for non-cognitive (i.e., perceptual and motor) activity. A trial consisted of a set of

either three or six comparisons. For a set of three comparisons, the time allotted per trial, noted

t, ranged from 2.25 to 10.5 seconds. For a set of six comparisons, t ranged from 4.5 to 21

seconds. Thus the average time per comparison, noted T, was varied from 0.75 to 3.5 seconds

in 0.25 seconds increments for both conditions and 12 different values of T were recorded.

Since even the minimum average time per comparison of 0.75 seconds allowed ample time for

eye movements, perception, and motor response, it could be assumed that the major limiting

factor on the performance of the subjects was the bounded rationality constraint Fmax.

4.3.3 Organization of Trials

The experiment consisted of blocks of twenty four trials within which the number of ratios

was kept constant. A block of trials consisted of a descending series over the 12 values of t,

followed by an ascending series. Such an alternation between ascending and descending series
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was aimed at smoothing out the anchoring effect of either only going from minimum to

maximum or only going from maximum to minimum. After a block was over, the number of

ratios was changed for the subsequent block. There was a 2.5 sec. pause between blocks,

during which time, the large rectangle to the left of the radar screen (see Figure 4.4) flashed to

indicate the impending change in the number of ratios. The pause was aimed not only at

showing to the subjects what the next number of ratios would be, but also at reducing tension.

For each subject, the full experiment consisted of eight blocks of trials for both numbers of

comparisons. The number of comparisons changed at the end of each block. The small
differences between the difficulty of different trials were to even out when considering blocks of

twenty four trials. The subject's response was recorded and mapped with the expected solution.

Immediate feedback showed the subject whether the answer was correct or not. Such a method

satisfied the subject's curiosity about the accuracy of his previous decision. It also allowed the

experimenter to estimate the subject's overall performance and ability to cope with time pressure.
The goal was to study the subjects' degradation of performance. Therefore it was important

to make sure that the range of time intervals for which the subjects were tested was large enough

so that both a stable performance and a degradation of performance could be observed. The

subjects had to be tested both over time intervals that were large enough so that their performance

was close to optimum, and also small enough so that their performance be below chance level.
By observing the subject run one session of the experiment, it could often be estimated if

the experiment was well calibrated for the particular subject, i.e., if the time window used to

test the subject was well chosen. For some of the subjects the experiment was run over larger
time intervals because preliminary analysis of their data showed that the time window used was

not large enough to gather all the relevant information. Since an inappropriate experimental setup

was not always spotted on time, subjects for whom the experiment was not run properly were

asked to come for extra sessions. As a result, for some subjects, more data has been collected.

For the subjects who only came for the scheduled sessions, the total duration of the

experiment was approximately 2.5 hours, divided in three sessions: eight blocks of twenty-four
trials were completed in each session and subjects typically participated in no more than one

session per day. To limit fatigue, each session was seperated into four ten-minute subsessions

between which the subjects could take a brake. This was to allow them to relax and have good

attention span during the short subsessions. Prior to each experimental session, subjects were

given a brief (three to five minute) "warmup" period during which no data were recorded.
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4.3.4 Practice Session

Subjects received a 30 minute practice session prior to the actual experiment. This session

consisted of six blocks of trials over T for each number of ratios. For the practice session, T

was varied from 1 to 5 sec. per comparison in 0.5 sec. increments. Informal discussion with

subjects indicated that most felt their performance would not improve substantially with

additional practice. Practice was important because the subjects were not supposed to improve

their performance as the experiment was run; the analytical tools developed by Boettcher et al.

assume that the subjects are both well trained and qualified to perform the task. The practice

session was also useful in getting some feedback from the subjects. A few subjects decided not

to go on with the experiment, whereas some were advised not to participate in the study. The

few subjects who were asked not to participate were people who were not familiar at all with

approximation or rounding-off procedures necessary for such a task. They could not meet one

of the requirements necessary to use information theory when applied to decision making or

decisionmaking organizations: well trained and qualified decsionmakers. Except for those few

special cases, the practice data were not analyzed.

4.3.5 Subjects

Twenty-five subjects ran the experiment to its full extent, since one subject was eliminated

from the sample. Almost three quarters of the subjects (nineteen) were present or former MIT

students (both graduates and undergraduates), the others were MIT employees or students'

friends. The large number of MIT students is not inappropriate since MIT students should be

qualified to perform the task and, as mentioned above, the subjects should satisfy this

requirement.

4.4 PURPOSE OF VARYING THE NUMBER OF RATIOS

It was assumed in section 4.3.2 that the amount of workload per comparison was

approximately the same for trials of four and seven ratios. However, the effect of manipulating

the number of ratios was of some intrinsic interest, because of implications for how subjects

manage their time. Effective time management is more critical for seven than for four ratios,
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while "overhead" or "start-up" time is more critical for four ratios than for seven.

Therefore, if the value of the subjects' threshold (assuming it exists) was not significantly

affected by changes in the number of ratios, it could be established that, to some degree, the
bounded rationality constraint is stable across tasks. If, however, instability were found for such

a minor task change, there would be no need to go further.

Subjects knew before the start of each trial how much time, t, was allocated for the trial.

Part of the subject's task was to budget the available time over the three or six comparisons so

that all comparisons could be completed and full use made of the available time. The criticality of

accurate budgeting can be seen from Equation (4.9).

Response Time = m T + b (4.9)

where m is the number of comparisons (three or six), T' is the average amount of time the
subject allocates to each comparison, and b is the overhead, startup, or initialization time for a
trial. It is assumed that the value of b is independent of m. According to this model, the subject

must choose '17 so that the resulting response time is less than or equal to t. Clearly, with
increasing m, the detrimental effect of setting T' non-optimally increases relative to the

detrimental effect of the fixed overhead, b.

4.5 PURPOSE OF THE TASK CONSTRAINTS

4.5.1 Constraints on the Experimental Setup

In order to constraint the strategies the subjects could use, two restrictions ( already
mentioned in section 4.4) were imposed. First, ratios were displayed in pairs and only one pair

was identifiable at a time. Second, a final response was permitted only after all of the four or

seven ratios had been displayed. These two procedures forced the subjects to make a given
number of comparisons -three when four ratios and six when seven- or at least forced them to

consider all the ratios. Having a more precise idea of the steps the subjects went through is an

essential tool when computing the workload, since workload is dependent on the amount of

information that the subjects process. Such restrictions also eliminated the variation in the order

of information acquisition which could increase the workload, if the subjects had been hesitant
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when deciding which ratios to consider first.

Within the rest of the thesis, since one of the goals is to study the difference between trials

of three tasks and trials of six tasks, a trial will be defined as a set of three or six tasks, where

one task corresponds to finiding the smallest of two ratios.

4.5.2 Instruction to the Subjects

Subjects were instructed to attend only to the numeric information of each ratio even though

the physical distance of each ratio from the center was proportional to its numeric distance. This

was done to restrict the number of strategies the subjects would use.

This restriction is important, because Greitzer and Hershman (1984) showed that an

experienced Air Intercept Controller tended to use physical distance information only (and not
speed information) in determining which of a number of incoming ratios to prosecute first. This

simplified strategy was labeled the range strategy. The operator was, however, able to use both

range and speed information -- the threat strategy -- when instructed explicitly to do so. The

threat strategy, if executed in a timely way, is of course more effective than the simpler range

strategy.

4.5.3 Constraints on the Ratios

Another method, which was used to monitor as closely as possible the amount of work the

subjects did, was to impose constraints on the ratios. The ratios were very carefully chosen to

equalize the difficulty of the different comparisons and trials. (Changes in performance were not
to be caused by differences in task difficulty, but because of overload.)

For each trial, all ratios were either greater than or less than one. This restriction was

included because pilot work had shown that decisions involving ratios on opposite sides of one

were trivially easy, regardless of interarrival times. The greater-than-one / less-than-one

determination was made randomly for each trial.
Speeds and distances were selected subject to the following constraints:

(1) greater than 10 and less than 98,

(2) no multiples of 10.
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(3) Each speed and distance combination was screened and rejected if the resulting

ratio was a whole number,

Additional constraints were that:

(4) no speed value be used more than once per trial;
(5) no distance value be used more than once per trial;

(6) no speed value be the same as its corresponding distance value; and

(7) no two ratios have the same value.

Distances were selected independently of speeds, but had to satisfy constraints six and

seven.

The second round of pilot experiments included these constraints. The subjects, however,

reported that some comparisons were still much easier than others. It appeared that the ratios less
than one could be very difficult to compare because the numerical values could be very close.

To avoid especially difficult comparisons, new constraints were imposed on trials. As a result,
the candidate ratios obtained applying all the constraints mentioned above were screened against

the following new criteria:

(8) each possible pair of ratios within a trial of ratios less than one must differ by no
less than 0.05 and by no more than 0.9 and;

(9) in the greater than one condition, the minimum allowable ratio was 1.2;

If a candidate ratio failed on any criterion, a new ratio was generated and the process was

repeated until a complete set of four or seven compatible ratios had been obtained. (An attempt
was made to impose the same constraints on both the ratios less than and larger than one, but

when doing so, it was sometimes impossible to generate seven ratios larger than one satisfying

the appropriate constraints.)
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4.6 FEEDBACK FROM THE SUBJECTS

Generally, subjects seemed to be challenged by the experiment. Many subjects reported that
the experiment forced them to concentrate hard and that they were glad that each session was
seperated into subsessions between which they could relax. Also, it was a common feeling that
there was a breakpoint after which they could not process the task within the required time
anymore. A few subjects mentioned that they had had a harder time with trials consisting of
ratios larger than one than with ratios less than one. Such a difference was not built in
purposely, but is described and explained in Chapter 7; the algorithms which were used by the
subjects resulted in a higher performance for ratios larger than one than for the ones less than
one. Also, some subjects reported having a difficult time with the keyboard: the response that
they had chosen was not always the response that they entered through the keyboard. (Most of
the subjects made at least one error just because they had just hit the wrong key! ) Such errors
will be one of the sources of noise and discrepancies which are found in the data. Finally, it

appeared that there was a delay between the instant when the key was pushed and the answer
was recorded. This delay was particularly critical for the small values of T, since subjects tended
to answer as late as possible; sometimes their right answer was not recorded.
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5. EXPERIMENTAL RESULTS

In Chapter 4, the experimental setup was described. In this chapter. the experimental results
are analyzed with respect to the hypotheses that may be tested experimentally. First, in section
5.1, the data recorded during the experiment are presented and the hypotheses are stated. In
section 5.2, the methodology used to test the different hypotheses is described. In section 5.3,
the procedures required prior to testing the hypotheses are presented. In section 5.4, the data are

analyzed according to the different procedures and, in section 5.5, conclusions are drawn from

the experimental results.

5.1 THE DATA AND THE HYPOTHESES

5.1.1 The Data Collected

This section first describes the recorded measurements and then two examples are given to
explain how to reconstruct the data from the recorded data files.

For each trial, seven different data sets were recorded. (See Table 5.1) First the average
time allotted per task is shown in column 1. The average time varied between 0.75 sec. to 3.5
sec. for most subjects. The number of ratios for the trial is shown in column 2: either four or
seven ratios, i.e., three or six tasks. In column 3 is noted whether the time per trial was
increasing or decreasing: 1 indicates a descending series whereas 2 indicates an ascending series.
The subjects' performance is recorded in column 4. The subjects received a score of 0 if an

answer was given but did not match the correct answer, a score of 2 if no answer was given
within the allotted time, and finally a score of 1 if the answer matched the correct one. Column 5
lists the two digit distance, followed by the two digit speed of each ratio in the order it appeared

on the radar screen. In column 6 are inscribed the ratio number that the subject chose at the end
of each comparison. Finally in column 7, the time ( in hundredths of a second) the subject used
to process each task is noted.

As an example of how to read the data files, two rows of Table 5. 1, (noted *I and *2 in the
table), are described. The trial recorded in the row, *1, may be described as follows. The
average time T per task was 3.00 seconds, and there were four ratios, (three tasks), in this trial
(as indicated by the 4 in column 2). Then, the 1 in column 3, indicates that this trial is part of
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Table 5.1 Sample of the Data Collected: Subject 50, Session 1, First Set of Three Tasks

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7
Time # of Asc/ Perf. Speed and Distance Result of Elapsed Time
T Ratios Desc. J of the Ratios Comparison to Completion

of Task #
12 3 1 2 3

3.50 4 1 1 2686316766873891 1 1 1 204 99 127
3.25 4 1 1 7344513949248857 2 2 2 214 308 290

*1 3.00 4 1 1 4364185844521563 2 2 4 181 110 165

2.75 4 1 2 5919652537139531 2 3 3 368 247 220
2.50 4 1 1 8297298431424676 2 2 2 241 71 82
2.25 4 1 1 1289368253656283 1 1 1 132 77 55

2.00 4 1 1 4652118619514157 2 2 2 104 104 49
1.75 4 1 2 3764111562971634 1 1 0 373 161 0
1.50 4 1 1 3161179212425881 2 2 2 176 66 38

1.25 4 1 2 5716822144129622 1 0 0 395 0 0
1.00 4 1 2 2769347114634358 1 0 0 296 0 0

0.75 4 1 2 7139763588657537 1 0 0 242 0 0
*2 0.75 4 2 2 6245934837228267 1 1 0 192 11 0

1.00 4 2 2 3192218148724351 1 0 0 302 0 0

1.25 4 2 2 6947743525166452 1 1 0 302 82 0

1.50 4 2 2 7596488753865563 2 2 0 201 230 0

1.75 4 2 1 1452139539692939 2 2 2 182 55 44
2.00 4 2 1 2555146124311798 2 2 4 181 104 151

2.25 4 2 1 5369164165752785 2 2 4 307 127 137

2.50 4 2 1 2233269464752959 2 2 2 187 99 105
2.75 4 2 1 4383647834393763 1 1 1 242 131 104

3.00 4 2 0 5691135651926887 1 3 3 126 225 132

3.25 4 2 1 9862685588489673 2 2 2 263 121 263

3.50 4 2 1 2779596614213681 1 1 1 159 94 258
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the descending series: the T value was larger before this trial. The 1 in column 4 indicates that at

the end of the trial, the subject had correctly chosen the smallest of the four ratios.From column

5, the value of each ratio for this particular trial may be read. The four different ratios were:

Ri =43/64 R2 =18/58 R3 =44/52 R4 =15/63

From columns 6 and 7, the following information may be derived. Subject # 50 used 1.81
seconds (column 7, first number) to decide which was the smallest ratio of the first task: The

ratio # 2 was chosen, (see column 6, first digit). Then, between the result of the first task and

that of the second, 1.10 seconds had elapsed ( see column 7, second number ), and the subject
had chosen ratio 2, ( see column 6, 2nd digit ). Finally, it took the subject 1.27 seconds to

compare the last two ratios ( ratios 2 and 4 ), and enter the final solution, ratio 4.

The trial recorded in the row, *2, may be described as follows. There were four ratios,

(three tasks), and the average time per task was 0.75 seconds. This trial was during an

ascending series (a 2 in column 3), and the subject did not answer in time, (indicated by a 2 in

column 4). The values of the four ratios were as follows, (see column 5):

R1=62/45 R2=93/48 R3 =37 /22 R4 =82/67

Finally, the subject chose ratio 1 as the smallest of ratios 1 and 2 after 1.92 sec. and ratio 1
again as the smallest of ratios 1 and 3 after 0.11 sec. The subject then ran out of time before

entering a final solution.

5.1.2 The Hypotheses

The hypotheses which were to be tested using the experimental results were the following:

Hypothesis(l): Decisonmakers are subject to the bounded rationality constraint, that is the
bounded rationality constraint sets an upper limit on the amount of
information that decisionmakers can process before their performance
decreases drastically.

Hypothesis(2): If the bounded rationality constraint exists, assuming that the workload
for six tasks is approximately twice that for three tasks, (see section 5.2),
is there a significant difference between the value of the bounded
rationality for three tasks and that for six tasks for each subject?
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In Chapter 8, two more hypotheses are tested combining the experimental and analytical
results. The first is designed to confirm that Fma is stable for each subject as the number of
tasks is varied. The second tests the stability of Fmax across subjects.

5.2 THE PROCEDURES TO TEST THE HYPOTHESES

5.2.1 The Existence of the Bounded Rationality Constraint

This section first describes the tests necessary to prove the existence of the bounded
rationality constraint. Then, the theoretical model, 'single step ', and the empirical model,
growth curve, are discussed. Finally, the growth curve is characterized.

In section 4.2, the theoretical model associated with the existence of the bounded rationality
constraint is described as a 'single step' function. Such a model is not feasible when considering
concrete applications; humans do not behave in such a rigid and structured way, and unwanted
noise always distorts experimental results. The empirical model which will be used to prove the
existence of the bounded rationality constraint is a growth model (described in the next
paragraph). The first hypothesis, the existence of the bounded rationality constraint, may be
restated in terms of growth curves as follows:

(1) a growth model fits the data well;

(2) a growth model will fit the data better than a linear model;

(3) the existence of a time threshold (which will be noted T*), may be identified and
constructed from the growth curve model. This threshold corresponds to the corner
point of the step function shown in the theoretical model Figure 4.2.

The existence of Fma will be proved first by showing that the growth curve is a good model
of the data, i.e., it has the same general characteristics and a large R2 . The second step will be to
show that a growth curve fits the data better than a straight line, i.e., it is possible to identify a
time threshold (breakpoint) after which performance decreases significantly. This will be done
by showing that R2, the coefficient of multiple determination, is consistently larger for a growth
curve fit than for a linear fit. (In a third step, the time threshold T* is evaluated for each subject
in section 5.4.3)

The following paragraphs describe the general attributes of the family of growth curves.

66



These curves are characterized by an S shape: the growth starts slowly (characterized by a nearly

flat curve segment), then the growth increases rapidly (steep slope) and finally levels off. A

growth curve seems most appropriate to describe the experimental data, since it characterizes

patterns where quantities increase from near zero to close to the maximum level very rapidly.

For the purpose of this experiment, the most appropriate curve of the family of S curves is

the Gompertzt curve which has the characteristic of not being symmetric about the inflection

point. This is a relevant property, since one can not predict that performance will decrease in a

symmetric way after the subject is working beyond the bounded rationality constraint.

The Gompertz curve has three degrees of freedom and is given by (Martino, 1972):

J(t) = a eb c (5.1)

where J is performance expressed as a value between 0 and 1. The Gompertz curve may be

characterized the following way: The asymptotes are:

At t=0, J(0)=aeb (5.2)

Lim J(t) = a (5.3)

The inflection point occurs at:

tnf= In (b) / c

(5.4)
and the value of J at the inflection point is:

Jinf = a / el (5.5)

For linear regression using the least squares method, the Gompertz function may be linearized

as follows:

Y=-AX+B (5.6)
where

Y =Ln(Ln(a/J)); X=t; A=-cB; B=Ln(b) (5.7)
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5.2.2 Stability of Fmax Across Similar Tasks

When considering the experimental results, the stability of Fmax may be studied assuming

that the workload for six tasks is approximately twice that for three tasks. (See section 5.4)
Therefore, in this chapter, the stability of Fmax is tested only with respect to T*, the time
threshold (introduced in sections 4.2 and 5.2.1). T* is assessed for each subject for both three

and six tasks in section 5.5, after the existence of the bounded rationality constraint has been
proved. Then, the distribution over subjects of T* for three and six tasks is evaluated separately,

and the type of each distribution is compared. Finally, the significance of the difference between

the mean of the T* 3 and T*6 distributions are compared using a statistical test, the t test. The
hypothesis is validated, if the statistical tests conclude that the two distributions are of the same

type and the means are not significantly different. (A 0.95 level of confidence is used.)

5.3 THE PROCEDURES PRIOR TO TESTING THE HYPOTHESES

5.3.1 The Data Analyzed

Since the hypotheses focused on the subjects' performance, only the data strictly related to
the subjects' performanc -- the time alloted per trial, the number of ratios for the given trial and
the score for the given trial -- are analyzed. (The rest of the data could provide basic data for

future research.)
When assessing performance, a wrong answer and an incomplete answer were treated

similarily. As a result, for subject i, for each trial k corresponding to the average time Tp, the
score was assumed to be an independant Bernoulli variable with probability Pij.

1 If the tasks were completed within the alloted time
and the correct ratio was chosen.

Xijk = (5.8)

0 Otherwise.

An estimate of Pij, was computed as follows using the simple unbiased estimator pi1

24

Pij= I Xijk /No (5.9)
k=1
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where No is the number of times the subject was run for each time interval. For most subjects

No is equal to 24. The estimated performance was plotted against the average time allotted per

task for Subject #23 in Figure 5.1 and in Figure 5.2 for Subject # 35.

Subject # 23 3 Tasks
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Figure 5.1 Performance Versus Average Allotted Time

Subject # 35, 3 Tasks
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Figure 5.2 Performance Versus Average Allotted Time

5.3.2 Data Transformation

Curve fitting is used to test whether the Gompertz model fits the data well. Since each Pij is

the sum of No independent identically distibuted Bernoulli variables divided by No , each Pij has

a different error variance, and one of the necessary assumptions for regression and curve
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fitting, i.e., equal error variances, is violated.

Variance (Pij) = Pij * (1- Pij ) / No (5.10)

Therefore, in order to equate the error variances, the estimates Pij were transformed using

the arcsine formula:

(sin -1 (sqrt( Pij) )/1.57 (5.11)

The denominator (W/2) is a scaling constant to keep the range of the estimates between 0 and 1;
the variances remain equal. The arcsine transformation was used instead of the logit
transformation because the logit transformation is more appropriate for data which is symmetric
about an inflection point. Table 5.2 shows the impact of the arcsine transformation on seven
different values ranging between 0 and 1. (Values 1/4, and 1/7 have been chosen since they are

the performance which would be expected if the subjects were simply guessing for the trials of
three and six tasks respectively.) The general effect of the arcsine transformation is to increase

slightly small values, while slightly decreasing large values. Since it has most effect on both the
lower and upper values, the arcsine transformation will tend to make a threshold, (if there is

any), less visible. The difference between maximum and minimum performance is reduced as the
whole curve is 'squeezed' and flattened.

All analyses reported herein are based on the transformed estimates which will be called

performance.

Table 5.2 The Effect of the Arcsine Transformation

Value Transformed Value

0.0 0.0
1/7 0.247
1/4 0.334
0.4 0.436
0.5 0.500
0.6 0.564
0.8 0.705
0.9 0.796
1.0 1.000
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5.3.3 The Gompertz Curve Regression

A computer package, RS/l, (Bell Labs) was used to estimate the Gompertz curve parameters

for each data set, and evaluate the fit, the R2. The program first asked for the function to use as

a curve fit. The Gompertz function was typed in. Then it asked where to find the x values and

the y values; these were stored in a table, the same for all subjects. The program then wrote the

partial derivative of J with respect to a, b and c, and asked for starting values for a, b and c, as

well as a convergence criterion. The selected starting value for a was different for each subject

since the subjects' maximum performance was chosen. The same starting values for b and c

were entered for every subject, 2 for b and 1 for c. Choosing different starting values in the

same range would not have made any significant difference since for each subject the program

ran by iteration until the error converged was less than 0.0001. When a performance of 0 was

encountered, the computer transformed it to a small value, apparently in the range of 0.00001.

5.4 APPLICATION OF PROCEDURES AND RESULTS

5.4.1 General Characteristics of the Data Analyzed

Performance versus average time allotted per task was plotted for each subject for both three

and six tasks for the transformed data. The curves appeared to have the following set of

characteristics:

(1) They do not have the Yerkes-Dodson concave shape. This indicates that the
experiment succeeded in tapping into the moderate-to-high arousal portion of
the Yerkes-Dodson curve (see Figure 4.2), rather than the "vigilance" portion.

(2) Most curves tend to be flat (zero slope) for large values of T.

(3) They have positive slopes for smaller values of T.

(4) Performance drops and tends to level off for small values of T.

Figure 5.3 shows performance versus the average time allotted per task, t, for two

subjects. These curves were selected as being examples of strong, (a), and average, (b),
representation of the threshold hypothesis. (These curves are the same as in Figures 5.1 and

5.2, but with the estimated performance.)
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Only half of the subjects had more than one data point below chance level because the

allotted time could not be decreased indefinitely. It was necessary that poor performance be

caused by mental and not physical limitations. The subject needed enough time to press a key.

One subject was eliminated from the sample, because the experiment was not run properly

(inappropriate time window) and the subject was not available for further testing. As a result,

the population sample was reduced to twenty-five subjects.

Subject # 23 , 3 Tasks
P
e I
r
f 0.8
o 0.6 .
r
m 0.4
a 0.2
n . .
c 05 -- -

e 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5

Interarrival Time (sec)

(a)

Subject # 35, 3 Tasks

P

0 .8

o 0.6
r
a 0.4

n
c 0 -, ." .
e 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5

Interarrival Time (sec)

(b)

Fig.5.3 Transformed Performance versus Average Allotted Time per Task for Two Subjects.

72



The characteristics of the curves describing subjects' performance as a function of average

time allotted per task, suggest that a Gompertz curve could be appropriate for summarizing the

data.

5.4.2 The Existence of Fmax : the Gompertz Fit

The three parameters a, b, and c of the Gompertz curve were derived for each subject for
trials of both three and six tasks. The parameter 'a' ranged from 0.42 to 0.83, the parameter 'b'
ranged from 1.61 to 222.78, and 'c' ranged from 0.77 t o 7.15. The distribution of the values
for parameter 'b' was not uniform: for trials of three tasks, 23 of the 'b' values were less than
25.00 whereas for trials of six tasks, there were 22 'b' values less than 25.00. The large values

taken by the parameter 'b' for some of the subjects was due to the following reasons. First,
performance J is not very sensitive to changes in b. Second, a very small convergence criterion
was used in the regression. Finally, by combining equations 5.2 and 5.3, b may be expressed as
the logarithm of the ratio of the performance at T equal zero, to the performance as T tends to
infinity. Therefore, if the subject's performance for very small T values is 0 or close to 0, b will

be very large. In the five cases when the parameter 'b' was exceptionally large, for the lowest T
values, the subjetcs' performance was very close to 0.

In every case the Gompertz fit was good: the min R2 was 0.93, and a check of the residuals

showed no consistent pattern which could indicate that the Gompertz was not an appropriate
model. Also, in every case, the Gompertz fit was at least as good and almost always
significantly better than a straight line fit: R2 ranged from 0.93 to 0.99 for the growth curve,

whereas for the linear regression, R2 varied from 0.45 to 0.93. A one sided statistical t test was
made to verify that the R2 for the Gompertz fit were significantly larger than that for the linear fit.
The t value obtained was 23.7. It is much larger than the maximum t* value which would

confirm that the two distributions are not significantly different. (t*0.95,24=1.078 for a one sided
test with a 0.95 level of confidence and 24 degrees of freedom.). In section 5.4.1, the

characteristics of the data were described as being similar to the characteristics of the Gompertz
curves. These observations, combined with the large R2 values for every subject indicate that
the Gompertz curves are a good description of the data. The t test confirms the Gompertz' good
fit as well as the existence of a time threshold T* (which will be evaluated in section 5.4.2): The
bounded rationality constraint exists.

Figure 5.4 show the Gompertz fit superimposed on the observed data. The subjects and the
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number of ratios are the same than the ones used for Figure 5.3.
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f 0.8
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C 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5
e

Interarrival Time (see)
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Figure 5.4 The Gompertzt Fit for Two Subjects
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5.4.3 Evaluation of T*

The existence of Fmax was proved for every subject. Before testing the stability of Fmax,

procedures to evaluate T* are needed. This section describes how T* may be found both

analytically and graphically.
In order to stay as close as possible to the theoretical model, (the comer point of the 'single

step' function), T* was defined as the point at the intersection of the following tangent lines: the

asymptotic performance (the parameter 'a' of the Gompertz curve), and the slope at the inflection

point of the Gompertz curve. (See Figure 5.5). The first line forces performance to be at

maximum, whereas the other is a good approximation of the speed at which the subject reaches

maximum performance as T increases. Had the slope between the maximum and minimum

asymptotes been constant, that slope would have been chosen. Figure 5.5 shows the tangent

lines and resulting T* value for the same S curve as shown in Figure 5.4 a.

-0- Scurve - Tangent -z- Tangent
p

e I.-
r 0.8

r

n 01

e 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5
Interarrival Time (sec)

Fig.5.5 Construction of T* using Tangents

Analytically, T* may be also found as the intersection of the two lines:

J =a

J =ta T*+ (5.12)

where a is the asymptote of the Gompertz fit. Therefore:
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T*= (a- )/ a (5.13)

where a is the slope at inflection point and 1 is intercept of the tangent at the inflection point.

Since, *pop. Equations 5.4 and 5.5,

a = a c / e l , Jinflection = a / e, Tinflection = 1n(b) / c,

then,

Jinflection = a Tinflection + (5.14)

P3=a (1-ln(b))/el (5.15)

Substituting a and 3 in Equation 5.13, the folowing expression for T* is obtained:

T* = [el.1+In o) ] / c (5.16)

where b and c are two of the three parameters of the Gompertz curve.

It is interesting to notice that the asymptote of the Gompertz curve, the parameter a, is not

present in the equation. The sensitivity of T* with respect to a is nonetheless larger than that

with respect to b or c, since a is related to T* through b and c by the Gompertz model. Further

computations have shown, as expected, that T* is more sensitive to a than it is to b or c.

5.4.4 The Stability of Fmax Across Similar Tasks: T*3 versus "* 6

For each subject i , T*i was computed for both three and six tasks and noted Ti*3 and Ti*6.

The obtained T* values are summarized in Table 5.3. Both the mean value and the standard

deviations were very similar for three and six tasks: 2.079 sec. versus 2.069 sec. for the mean

and 0.651 sec. versus 0.579 sec. for the standard deviation.
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Table 5.3 Summary of T* Values (sec.) for Three and Six Tasks

Mean Std. dev Min. Max.

Three Tasks 2.079 0.651 0.911 4.046

Six Tasks 2.069 0.579 1.080 3.504

Generally, the subjects had T* values for three and six tasks that were very close. A little
over half of the subjects, thirteen out of the twenty-five, had a larger T* for three tasks than for
six tasks. Also, since the mean of T* over subjects were very close for three and six tasks
-- only a 0.01 difference -- one was tempted to conclude that there was no systematic difference
in the T*'s as a function of the number of ratios. To confirm such a hypothesis, a few tests had

to be performed. First, one had to check that the two distributions were of the same type, and
then, that their mean was not significantly different.

The slightly larger standard deviation of the T3* distribution was mostly due to one
significantly larger T3 * value: 4.046 sec. The subject who had a high T3* was not performing
especially worse for three than for six tasks but the performance was increasing more irregularly.
He had complained about the setting of the experiment, and reported entering several times the
wrong answer because of inadvertently pressing the wrong key.

A plot of the distribution of the T*'s for three tasks (Figure 5.6) and for six tasks (Figure
5.7) leads to the hypothesis that the two distributions are normal. It is interesting to note that in
the case of three tasks, most of the difference between the T* distribution and the normal

distribution is due to the fact that the distribution of the T*'s is extremely peaked. In the case of
six tasks, the difference is caused both by the smaller T* values as well as by the peak around the
mean. The Chi-Square test consists of evaluating the difference ( noted Q2 ) between the
distribution under study and ( in this case), the normal distribution; Q2 is computed as follows:

5
Q= (Observed i - Expected i )2 / Expected i  (5.17)
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Figure 5.6 Distribution of the T* Values for Three Tasks
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Figure 5.7 Distribution of the T* Values for Six Tasks

The Q2 values were 5.6 for three tasks and 4.4 for six tasks which were both smaller than

the critical value: X2,0.95,3 = 5.99. Thus, it could be concluded that the two distributions were

both not significantly different from a normal distribution, and were of the same type.
The next step was to compare the mean value of the T* distribution for three and for six
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tasks. A statistical test, the t test, was run. (The test performed is the t test used when

comparing two dependent samples.) The t value obtained was 0.09 (t = 0.09 < t' 2 3,.95 = 1.74)

which confirms the hypothesis that the two distributions were not significantly different

Therefore, it may be concluded that T* is robust with respect to minor task changes, and

assuming that the workload for six tasks is approximately twice that for three tasks, the same

may be postulated for F.a. As a result, each subject i was assigned a single value Ti* which

was equal to the average of Ti*3 and Ti*6. The frequency distribution of the individual Ti*'s was

plotted. (See Figure 5.8). This distribution is unimodal, very peaked, and has mean 2.074 sec.

and standard deviation 0.549 sec.

Observed - Normal

F 12
r 10 "
e

u 6

e 4
n 2c

y 0
< 1.25 1.26 to 1.79 to 2.36 to > 2.91

1.78 2.35 2.90
Time Interval (sec)

Fig. 5.8 Distribution of the Average Ti* Values.

The distribution of the Ti*'s for three and that for six tasks was shown to be normal. Such

was also the case for the individual T* values: A X2 test for goodness of fit revealed

non-significant deviation from normality:

Q2 = 4.4 < X2(.95,2) = 5.99.

The fact that the T* distribution is normally distributed is of interest since one may postulate

that Fmax for each subject will also be normally distributed If this postulation is confirmed in

Chapter 8 by the analytical results, then the hypothesis that Fma x is stable across subjects will

be validated.
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5.5 CONCLUSIONS

The existence of the bounded rationality constraint, Fmax, has been proved by the

experimental results. T*, the time threshold associated with the bounded rationality constraint,

has been evaluated for each subject and both numbers of tasks. It was shown that the T* value

for three and six tasks were not significantly different. Therefore, under the assumption that the

workload for six tasks is approximately twice that for three tasks, one may conclude that Fmax is

stable when minor task changes are made. Finally, a T* value was estimated for each subject.

The distribution of the individual T*'s was normal. Such a result enables the postulation that

Fmax is stable across subjects.
The stability of Fmax both across similar tasks, and across subjects will be confirmed in

Chapter 8 when both the experimental and analytical results are combined. First, however,

models of the algorithms used by the subjects are presented in Chapter 6. Then, in Chapter 7,

the workload associated with these algorithms is evaluated.
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6. THE DECISIONMAKING MODEL: THE SUBJECTS' VIEWPOINT

6.1 INTRODUCTION

The goal of this project was to study the bounded rationality constraint Fmax. Such a study

requires both experimental and analytical results. In Chapter 5, the experimental results were

described: the existence of Fmax was proved, T* was evaluated for each subject, and statements

were made about the stability of Fmax across tasks. The next goal of this report is to present the

analytical results, (the computation of workload), and confirm the assumptions raised in Chapter

5 concerning the stability of Fmax . To compute the workload associated with the task, the

subjects' mental process must be modeled and then transformed into information-theoretic

algorithms. This chapter presents basic mathematical models of the subjects' mental process.

A mathematical model attempting to describe the subjects' mental process would be of little

significance if it was not validated. Therefore, it seemed appropriate to evaluate the

appropriateness of these models. After running the experiment, the subjects were asked to

describe the algorithm(s) that they had used while running the experimer.t; these results are

described in section 6.2. The major dififculties encountered when modeling the tasks are

described in section 6.3. Then, simple mathematical models which took into account the

algorithms described by the subjects were developed and are presented in section 6.4. Each

subject was assigned to a particular algorithm. Before analyzing these models and computing the

workload associated with each (Chapter 7), the appropriateness of the algorithms is evaluated in

section 6.5. The performance of the models is compared to that of the subjects.

6.2 SUBJECTS' STATEMENTS

6.2.1 Correspondence with Cognitive Science

From reading the subjects' description of the algorithms used, as well as their genral

comments about the experiment, it appeared that the subjects felt under time pressure, and that

they had been using coping strategies to perform the task. The task was to compare ratios and

find which was the smallest. To ensure 100% performance, a computer program would have

processed the task by computing the value of each ratio and then comparing the obtained values.

It appeared that the subjects often only processed a portion of the input information that they
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would normally use, if they had more time or aids (even pen and pencil) to perform the task.

Subjects used shortcuts and filtering methods that allowed them to processes the most significant
information. Examples of such behavior were subjects who systematically ignored the second

digit of the two-digit values of speed and distance. Such an observation is similar to the
conclusions drawn from the few studies of time pressure found in behavioral decision literature

(Wright, 1974).

6.2.2 Retrieving Descriptions of the Model(s) Used

As it was mentioned in the previous section, the subjects were asked to describe the
algorithm that they had used to perform the task. Before the subjects' statements were studied,

different models that would be plausible descriptions of the algorithms were designed. These
models were used as guidelines when the descriptions were too vague.

The first task was to translate the subjects' description into a mathematical model. Whereas

some subjects seemed able to analyze very clearly the basic mental processes that they have used,
others seemed unable to do so. Phrases like 'When the comparison is not obvious...' appeared
more often than expected. A study of the rest of the description often gave some idea of the
algorithm (or at least the algorithmic structure) used. Here are a few extracts of some of the

subjects' answers:

Extract A:
Step 1: Observe left hand column of multi digit fractions

Step 2: Try to look for 8's or 9's in the second column
Step 3: When digits on the left are the same, decide based on second column digits

Extract B:
For iatios <1 compare numerators if the ratios comparable, otherwise obvious
For ratios >1 if comparable try and reduce otherwise want smaller numerator, greater

denominator.

The models were aggregated into a few categories which are discussed in section 6.4.
Translating the subjects' description required a subjective methodology where both irnuition and
common sense' played a very im-ortant role. Such modeling methods required an evaluation of
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each algorithm using some test of appropriatenes, , or some other evaluation method. Such a test,
which was alluded to in the first section of this chapter, is described in detail, in section 6.5.

6.2.3 The Stages of the Decision Process

In Chapter 2, the decision-making model was described as a two stage process. The first
stage, the Situation Assessment stage, allowed the decisionmaker to analyze and assess the
situation before making a decision in the response selection stage. At each stage, the subject
could choose from a set of algorithms to process the information.

When running the experiment, the subjects seemed to be using only one situation

assessment algorithm. The algorithm consisted of looking at the clock and understanding how
much time they had to compare the ratios, understanding how many ratios would have to be

processed, and finally just looking at the value of the ratios present on the screen. The subjects

did not mention these first steps which are the obvious steps that one would follow when faced
with such a task.

The response selection algortithm varied from subject to subject. It appeared, however, that
mc st subjects used the same algorithm, whatever the input ratios were. The main factor which
seemed to induce a change in algorithms was the time allotted to perform the task. When they

could not process the task using the strategy they were most comfortable with or their 'optimum
strategy', subjects often switched either to a simpler version of the same algorithmic structure, or

to a different structure. The subjects were instructed not to guess unless it was an educated
guess, but subjects sometimes just picked one of the two ratios randomly, often hoping that the
next comparison would be easier. Changes in strategies due to increase in time pressure were
very difficult to monitor since most subjects were not even aware of the change, or if they were,

did not report it.

As a result, the models that were derived for each subject, encompass both the Situation

Assessment and the Response Selection Stages, but do not take into account the subjects'
relationship with the clock. For this particular experiment, the two stage decision model of the

single decisionmaker shown in Figure 2.6 may be simplified as in shown in Figure 6.1.
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6.2.4 The Issues of Pure and Mixed Strategies

In the case of this experiment, when considering the type of strategies used by the subjects,
the notions of pure and mixed strategies as described in Boettcher and Levis (1982) seem
difficult to apply. Pure and mixed strategies are defined as follows. In the case of the situation
assessment stage, a decisionmaker without a preprocessor uses a pure strategy if whatever the
input, he uses a given algorithm to process that input with probability one, (he always uses the

same situation assessment algorithm). In the case of the RS stage, the notion is very similar.
For each input identified by the situation assessment stage, there is only one response selection
algorithm that the DM will use to provide a response. This may be expressed mathematically as
follows:

p(v =j I z = zi) =1 (6.1)

where j is the algorithm selected in the response selection

zi is the output of the situation assessment algorithm.

In the experiment, it was very difficult to evaluate which strategy or algorithm(s) the
subjects were using. It was even more so when trying to identify which subject changed
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algorithm when. Because of the experimental setup, as explained in the previous section,

(6.2.3), there was only one situation assessment algorithm, thereby there could only be a pure

strategy. For the response selection stage, the setup did not force the subjects to use any

particular algorithm. From talking to the subjects and reading their comments, it appeared that the

subjects used a single strategy whatever the input was. It is only when they felt too pressured

that they switched from their 'usual' strategy to a simpler one. Therefore, since the change of

strategies was based on one of the input characteristics, (the time available to process the trial),

they were using a set of pure strategies for the response selection stage.

6.3 MODELING DIFFICULTIES

6.3.1 Requirements of Information Theory

As described in Chapter 2, information theory is a mathematical tool which may be used to

compute the cognitive workload associated with a given task. Information theory imposes

constraints and requirements on the type of tasks that may be modeled as well as on the

algorithms that may be used. These conditions restrict the type of tasks that may be simulated.

One of the major constraints is that the tasks be well defined so that they can be modeled

using mathematical variables, or at least variables for which a probability distribution may be

derived. As a result, the quantities and parameters which are used must be measurable values,

and belong to a finite set.

The other conditions which must be fulfilled are that the decisionmakers be well trained and

motivated and that they operate at a level where the bounded rationality is not in effect. The last

condition concerning the bounded rationality constraint is particularly important to this section of

the research and has serious implications when considering the algorithms that will be modeled

to compute the cognitive workload. It has been metionedi that subjects have been switching from

one algorithm to an other as the time allotted per trial was decreased. When subjects felt

overloaded, or close to being overloaded, many switched to an algorithm for which the cognitive

workload was less; these algorithms were called coping algorithms. As a result, when modeling

the task and assessing the workload, it will be very important to model the algorithm that subjects

used when they did not feel under serious pressure yet, i.e., the algorithm that they used when

they have the miost time available.
The growth curves which were used to model the experimental data smoothed out any
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change in strategy. Therefore, T* may be considered as an average over several 'T*', each 'T*'

associated with an algorithm requiring less cognitive workload: a coping strategy. Since the

individual 'T*'s were not identifiable, the T* value (see Equation (5.16)) was retained. It may
also be postulated, that the slope at which performance decreases, (more specifically the slope at
the inflection point), reflects the number of different coping algorithms used by the subject as the
time available to perform the task decreased: the larger the number of different algorithms used,

the smaller the slope, and consequently, the smaller the T* value.

6.3.2 The Limitation of the Mathematical Models

Information theory restricts the type of algorithms that may be used as well as the

experimental setups. One of the major problems in trying to assess the mental workload is also
derived from the difficulty or better the incapacity to include non-quantitative measures in the
mathematical models. How may one model a subject's mental process when the subject

describes choosing one ratio over another because 'the comparison was obvious', or how can
one describe the fact that another subject will just assume that 2/5 is less than 3/7 ? In both
cases, the subject knows (or thinks he knows) the answer and uses some cognitive process to
make a decision. No previous research has been done to evaluate and compute using information
theory the cognitive workload associated with intuition. The impact of memory on workload
has been discussed in the literature (Hall, 1982; Bejjani, 1985). In this research, for simplicity,

it is assumed that the decisionmakers are memoryless with respect to short term memory. Also,
with respect to long term memory, the only cognitive work which is assessed when choosing

the smallest of two single digit ratios is due to the distribution of each ratio. The cognitive work
required to retrieve the information from permanent memory is ignored but could be the subject

of future research.

6.4 THE RESULTING MODELS

6.4.1 The Different Mental Approaches

When considering all the c-rnstraints imposed by the analytical tools as well as by the nature

of the task, the number of different approaches was quite small. It appeared that there were only
three different basic types of mental processes. Whereas some features were common to all three
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types, the most important processing in each case was quite different. The three different
methods were the following:

Method 1. For each ratio, approximate the speed and distance with single digit
values, then compare the resulting ratio.

Method 2. Approximate the ratio (or its inverse) to its nearest integer and compare.
Method 3. Compare the differences between numerators and denominators.

Whereas for the first two methods the first steps could be done independently for each ratio,
the last approach included both ratios as soon as some processing was done. Each method
resulted in one, two or three different algorithms to include some of the variability among

subjects. The resulting set of models consisted of six different algorithms that will be described
in detail in the next section. Finally, before performing any computation or approximation, it
appeared that the subjects checked for any significantly small ratio. If such a ratio was spotted,
they ignored the other ratios and would give the 'small ratio' as the solution. Such a procedure
was even more widely spread when the time allotted per comparison was small. For small

processing times, the notion of a small ratio was often less strict, and included ratios that would
not have been considered if the clock had shown more time available.

6.4.2 The Six Algorithms: Description of the Models.

Models derived from method 1

The first approach (method 1 described above), which consisted of approximating the last
digit of both speed and distance, was used by four subjects. Two different algorithms resulted
from this approach. The first approximation method, (named Algorithm 1), was to simply
truncate the last digit of both speed and distance values when performing the comparison. The

second method, (named Algorithm 2), is to truncate first the last digit of the speed and distance
values as for Algorithm 1, and then add to the truncated values 0 if the second digit is less than 5

and 1 if the second digit is larger than 5. Once the ratio values have been approximated, the

subject has to compare the two resulting ratios. If the two are not equal, the solution is the
smallest ratio. If the two are equal, the subject randomly picks one of the two as a solution.

Given two input ratios RI and R2 such that
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Rl=dlfvl and R2=d2/v2,

one comparison for Algorithm I is described in Figure 6.2, whereas one comparison for

Algorithm 2 is described in Figure 6.3.

d[ 1]=trunc[dl/1O]

d[12=trunc[d2/1O]

vfl1]=trunc[v 1/10)

v[2]=trunc[v2/10]

d[I lI/v[1 I <> d[2]/v[21

SI =RI p (S1=R1) =0.5 S =R2
p (S 1=R2) = 0.5

Figure 6.2 One Comparison Using Algorithm 1

d[ 1]=round[d 1/1 0] d[2]=-round[d2/1 01
v[11=-round[vl/101 v[21J-round[v2/101

d[1]/vtfl]<> d[2]/v[21

Sl=R1 p (S1=R1) =0.5 =R
p (S1I=R2) = 0.5

Figure 6.3 One Comparison Using Algorithm 2
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Models derived from method 2

Only one algorithm was derived from method 2. This model had the disadvantage of

being different for ratios that were less than one and for ratios that were larger than one.

For ratios that were larger than one, each ratio was rounded to its nearest integer. Then, if

the absolute difference between the nearest integer and the ratio was more than 0.25, the

integer value was corrected by positive 0.25 or by negative 0.25, as appropriate. Then the

resulting values for both ratios were compared. As for algorithms I and 2, if the values

were the same, it was assumed that the subjects picked randomly one of the two ratios for

the solution. For ratios less than one, the inverse of the ratio is first taken. Then, the same

process as for ratios larger than one is used. The resulting algorithm was called Algorithm

3 and the process for one comparison is shown in Figure 5.4 for ratios larger than one and

in Figure 5.5 for ratios less than one. Considering the two ratios R1 and R2 already

defined for algorithm 1 and 2, Algorithm 3 is described for ratios larger than one in Figure

6. 4 and for ratios less than one in Figure 6.5.

Ratios > I i = l, 2

rat[i] = round[divi]

if [ rat[i - (di / vi) I > 0.25 then ratio[i] = rat[i] - 0.25

if [ rat[i] + (di / vi)] > 0.25 then ratioti] = ratfi] + 0.25

ratio[ 1] < > ratio[21

Sl =R1 p (SI=Rl) = 0.5 S1 =R2
p (S1=R2) = 0.5

Figure 6.4 One Comparison Using Algorithm 3 for Ratios Larger than One
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Models denved from method 3

'Three algorithms were derived from method 3 which consisted of comparing the differences

between the numerators and denominators ( distances and speeds) of the two ratios that had to be

compared.

Ratios < 1 i = 1, 2

rat[i] = round[vi/dil
if ( 1/ rat[i] ) - (di / vi) > 0.25 then ratio[i] = rat[i] - 0.25

if ( 1/ rat[i] ) + (di / vi) > 0.25 then ratio[i] = rat[i] + 0.25

ratio[IlI <*> ratio[2

S1 = R2 p (SI=Rl) = 0.5 S1 =RI
p (S l=R2) = 0.5

Figure 6.5 One Comparison Using Algorithm 3 for Ratios Less than One

For Algorithm 4 and Algorithm 5, the difference between the distance and the speed of each
ratio was computed, then, the ratio with the smallest difference was chosen. For Algorithm 4,

the subject could come to a conclusion if the difference was larger than 10. For Algorithm 5, the

subject came to a conclusion if the difference between the speeds was larger than that between the

distances or vice versa. The two algorithms are described below in Figures 6.6 and 6.7.

S1 = R2 p (S1=R1) = 0.5
p (SI=R2) = 0.5

Figure 6.6 One Comparison Using Algorithm 4
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d,-,<'>d2 -V 2

S1 =R1 p (S1=Rl) =0.5 =R
p (SI=R2) = 0.5

Figure 6.7 One Comparison Using Algorithm 5

The last model, Algorithm 6 is a combination of Algorithm 2 and method 3. The subject

first checks if there is not one ratio which has a smaller distance and a larger speed than the other.
If he can not make a decision by these criteria, the subject uses the approximation method of

Algorithm 2. Algorithm 6 is described in Figure 6.8.

d, <d2 and >v>v

No Yes

d[ Il] -round(di /10) R
d[2]--round(d2/1O)Si=R
v[1]=-round(vi /10)
v[21]-round(v2 /10)

d[1J/v[1J <*> d[21/v12]

Sl =R1 p (S I=R2) =0.5 S1= R2
p (S1=Rl) = 0.5

Figure 6.8 One Comparison Using Algorithm 6
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6.5 EVALUATING THE MODELS

6.5.1 Purpose of the Evaluation

The different models used by the subjects have just been described. However, before

assuming that these models are a reasonable representation of the subjects' mental processes, the

appropriateness of these models must be validated. To do so, the maximum performance of each

subject will be compared to the estimated performance of the algorithm associated with each

subject.

6.5.2 Defining the Maximum Performance

Each subject's maximum performance was established from the experimental results using

the S curves. For subject i, the maximum performance is noted ai3 for three tasks and ai6 for six

tasks, and may be derived as follows:

forj = 3 and 6 aij=lim (Jij(T)) (6.2)
T--oo

Each of the six algorithms described in section 6.4 represents a pure strategy and is noted fk,

with k taking values ranging from 1 to 6. For a given algorithm fk, the estimated performance

will be noted k3 for three tasks and k6 for six tasks.

The performance that would result from accurately using these algorithms has been

estimated by simulating the experiment 300 times on an IBM PC. Each algorithm was

programmed in Pascal, and the function "random" was used to generate sets of ratios satisfying

the requirements of the experiment, the same way the experiment had been set up. But since

whether the sets of ratios were less or larger than one depended on another random function, it

seemed important to simulate the experiment for both ratios (larger than and less than one) for the

same number of times.

Such a procedure gave particularly relevant information concerning the difficulty of the

experiment. Some subjects had mentioned that they found the ratios larger than one more dificult

to compare than the ratios less than one. This observation was confirmed by the simulation of the

algorithms: the algorithms always performed significantly better for the ratios less than one.
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Since the trials were independent identically distributed Bernoulli variables, the estimated

performance Jkj could be computed as follows:

Jkj= (Jkj<l + Jkj>l )/ 2  (6.3)

where:

150 150

Jkj<l = xi<l / 150 Jkj>1 = Xi>l / 150 (6.4)
i=lI i= 1

However, since each subject's performance curve had been transformed using the arcsine
transformation to perform the regression analysis, it was necessary to make the same

transformation on the algorithms' expected performance to have values that could be compared.
Therefore, an arcsine transformation was made on the algorithms' simulated performance. Table
6.1 shows the (transformed) estimated performance for each of the algorithms for three tasks
and the non transformed performance both for ratios less than one and ratios larger than one.
Table 6.2 shows the same results for six tasks.

The results are only estimates of the population's true mean. The variance for each
estimated performance was very low. It varied between 0.0005 to 0.005. (The sample size was

300 of a population of possible combinations of ratios close to 1013.)

The algorithms' estimated performance values were larger for trials of ratios less than one

than for trials of ratios larger than one. The difference may be explained by the constraints
imposed on the trials. For trials of ratios less than one, the values of the ratios were constrained
so that the difference between any two ratios be at least 0.05. The same constraint was not
imposed on trials of ratios larger than one for practical reasons: when running trials of six tasks,

the program often could not generate ratios satisfying the constraints. Instead, the ratios larger
than one were constrained to be larger than 1.2. As a result, the ratios larger than one were on
average slightly harder than the ones less than one.
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Table 6.1 Estimated Performance for the Six Algortihms for Three Trials

Algorithm Estimated Performance (Three Trials)

number Ratios < 1 Ratios >1 Overall Perf. Overall Perf.

untransf. untransf. untransf. arcsine transf.

A1.1 0.84 0,625 0.733 0.654

Al.2 0.86 0.645 0.753 0.665

A.3 0.91 0.724 0.817 0.719

A14 0.744 0.437 0.591 0.558

Al.5 0.757 0.628 0.693 0.627

Al.6 0.86 0.705 0.783 0.692

Table 6.2 Estimated Performance for the Six Algorithms for Six Trials

Algorithm Estimated Performance (Six Trials)
number Ratios < I Ratios >1 Overall Perf. Overall Perf.

untransf. untransf. untransf. arcsine transf.

Al. 1 0.645 0.538 0.592 0.559

A1.2 0.657 0.584 0.621 0.580

A.3 0.774 0.427 0.601 0.564

Al.4 0.608 0.349 0.479 0.486

AI.5 0.632 0.462 0.547 0.530

A1.6 0.832 0.591 0.711 0.639

Figure 6.9 shows the estimated performance of each algorithm for both three and six tasks.

The algorithms perform better for three than for six tasks, but the ordering of the algorithms'

performance stays almost unchanged. ( Algorithm 3 which performed the best for three tasks, is

only third to best for six tasks. The others have remained unchanged). The average difference

between performance for three tasks and performance for six tasks is a 0.1 decrease. Finally,

Figure 6.9 also shows that the difference in performance among the algorithms is not very large.
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For three tasks, there is only a 0.16 difference between the best and the worst algorithm, the

difference is 0.15 for six tasks. However, considering the small variances of the algorithms'

estimated performance (in the range of 10,3), the differences should not be considered as

negligible.

I Alg., 3 Tasks 0 Alg., 6 Tasks

Pe 1

r 0.8

00.6 - 00 0 0 6
r 0
m 0.4
a 0.2
n
c 0 1 i i i ,

e 2 3 4 5 6
Algorithm #

Figure 6.9 Algorithm Performances: Three Tasks versus Six Tasks

6.5.3 Comparing Performance: Simulations versus the Experiments

The six algorithms described in section 6.4 were derived from the subjects' descriptions.
Each subject was then assigned to the algorithm which was closer to the description he gave.

The next step was to estimate the algorithms' maximum performance. The goal of this section is

to evaluate the appropriatness of the algorithms.
Table 6.3 shows, for three tasks, the number of subjects who were using each algorithm,

the average performance over the subjects and, finally, the algorithm's performance (The

subject's performance which was averaged was the asymptotic performance, the 'a' values of the

Gompertz fit, see Equation (6.2)). Table 6.4 shows the results for six tasks. The difference

between the algorithms' and the subjects' performance was within a close range for three tasks;
this is shown explicitly in Figure 6.10.

Three subjects performed significantly better than the algorithms that they seemed to have

been using. These subjects were in the School of Engineering and had had very high scores on
the SAT's and the GRE's. They seemed very familiar with approximation methods, therefore

one may hypothesize that when the algorithms they were using could not give a significant
conlusion, they made educated guesses.
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Table 6.3 Three Tasks: Subject Performance Versus Algorithm Performance

Algorithm Number of Subjects Average Perf. Algorithm's Estimated
# Using it Over the Subjects Perf.

1 2 0.573 0.654
2 3 0.590 0.665
3 6 0.715 0.719
4 3 0.555 0.558
5 4 0.655 0.627

6 7 0,682 0.692

For six tasks, Table 6.4 suggests that, on average, the subjects were performing better than

the algorithms which were modeled. Since not a single subject mentioned using a different
algorithm for three than for six tasks, the algorithms were considered to be satisfactory models.

SAlg., 3 Tasks 0 Subj., 3 Tasks

e 1
rf 0.8

00.60 0.61 0 0 0
r
m 0.4
a 0.2
n
c 0-
e 1 2 3 4 5 6

Algorithm #

Figure 6.10 Subject Performance Versus Algorithm Performance: Three Tasks
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Table 6.4 Six Tasks: Subject Performance Versus Algorithm Performance

Algorithm Number of Subjects Average Perf. Algorithm's Estimated
# Using it Over the Subjects Perf.

1 2 0.543 0.559

2 3 0.688 0.580

3 6 0.732 0.564

4 3 0.585 0.486

5 4 0.645 0.530

6 7 0.704 0.639

*Aig., 6 Tasks 0 Subj., 6 Tasks
1

0.8 0
00.6 -

0.4

0.2

0.
1 2 3 4 5 6

Algorithm #

Figure 6.11 Subject Performance Versus Algorithm Performance: Six Tasks

Overall, the obtained results were satisfactory; the next step is to compute the workload

associated with each algorithm and estimate Fmax for each subject.
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7. WORKLOAD EVALUATION

The workload for the different algorithms is evaluated in this chapter. The information
theoretic model of each algorithm is obtained and the entropy of each variable is computed.

Thus, the workload associated with each algorithm can be evaluated.
The different steps of the modeling process are described in section 7.1. First, the input

alphabet is characterized, but it is impossible to enumerate. Then, the internal variables are
reviewed. In particular, the level of detail needed, and the effects of temporary and permanent

memory on the assessment of workload are studied. Finally, the impact of having trials of ratios
either larger than one or less than one is discussed. Section 7.2 describes the steps followed to
compute the entropy of the different variables. Finally , the workload is evaluated in section 7.3.
First numerical values of the workload of the different algorithm are given, then the feasibility of
these values are discussed and the experimental and analytical results are compared.

7.1 THE INFORMATION-THEORETIC ALGORITHMS

7.1.1 The Input Alphabet

The input alphabet is first defined for both numbers of ratios. Then the size of the alphabets
and the input entropies are estimated.

When the subjects start the experiment, the following information is available to them on the
computer screen: the number of ratios that are to be processed for the trial, the amount of time
they will have to process the task and, finally, the distance and the speed of the two ratios that

they will first have to compare. (See Figure 4.4). The time available to perform the task is a
parameter which varies from trial to trial.

It is assumed that the amount of cognitive workload required both to acknowledge the
amount of time available to perform the task and to register the time available is negligible
compared to the workload necessary to process the tasks. Therefore, the input vector includes

only the information about the number of ratios and the value of the speeds and distances of
these ratios. As a result, the input vector to trials of three tasks consists of a set of four ratios,
whereas the input vector to trials of six tasks consists of a set of seven ratios. Each threat is

actually a pair of speed and distance values. In case of three tasks, such an input vector noted
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x3 will be described as follows:

x3 (dlIvl, d21v2, d3/v3, d4/v4) (7.1)

where dl, d2, d3, and d4 are the distances associated with ratios 1, 2, 3 and 4, and vl,v2, v3
and v4 are the speeds associated with the same ratios. An example of such an input vector may

be the following:

x3, = (11/ 34, 25/89, 32/33, 28/57) (7.2)

The values taken by the distances and the speeds are constrained by the requirements
described in section 4.5. There are three types of sets: First, the set S1 of possible speeds and
distances, then R1 , the set of possible ratios where the speeds and distances belong to S1.
Finally X3, and X6 , are the sets of possible combinations of ratios for three and six tasks. X3

and X6 , may also be divided into subsets of ratios larger than one and subsets of ratios smaller

than one, noted X3A<1, X31x>1, X61x<1, X61x>I, respectively.
The input alphabets are X3 for trials of three tasks and X6 for trials of six tasks. The

ordering of the components of each input vector matters, i.e., the two vectors x3,1 and x3 ,2 are

not considered identical.

x3,1 = (11/34, 25/89, 32/33, 28/57) (7.3)

x3,2 = ( 25/89, 11/34, 32/33, 28/57) (7.4)

The above vectors are different because the order in which the subjects process the ratios

often has an impact on the final solution. The subjects use approximation methods to compare
the ratios; as a result, when given the same ratios but in a different order, the probability of error
is affected.

The input alphabets have been characterized. Now the distribution and the number of

elements of the input alphabets X3 and X6 must be evaluated to compute the entropy of the input
vectors x3 and x6 .

The distribution of both alphabets is assumed to be uniform, because each input vector xi is
generated randomly. ITt is assumed that each vector has the same probability of being
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generated.). The cardinal of each input alphabet is difficult to assess because of the constraints

imposed on the ratios. Therefore these figures are estimated as follows. First the number of

elements of each alphabet is computed assuming that there are no constraints on the sets of ratios.

Then, a computer program is used to estimate the number of eligible combinations of ratios when

the constraints are included.
The pool of acceptable ratios less than one is 3003, and the pool of acceptable ratios larger

than one is 2407. (These figures were computed by generating every possible pair of distances

and speeds and counting all the feasible ones. The number of ratios larger than one is less than

the number of ratios less than one, because the ratios larger than one were subject to an additional

constraint: they had to be larger than 1.2).
If the constraints imposed among combinations of ratios were ignored, the number of input

vectors less than one for three tasks would be:

4

A 3003-- 3003 * 3002 * 3001 * 3000 = 8.1162 * 1013 (7.5)

and the number of input vectors larger than one would be:

4
A 240-/= 2407 * 2406 * 2405 * 2404 = 3.3483 * 1013 (7.6)

That is, ignoring the constraints imposed betweeen ratios, the size of the input alphabet X4

would be:

4 4
A3003 + A24o7 = 11.4645 * 1013 (7.7)

The same way, ignoring the constraints imposed betweeen ratios, the size of the input alphabet

X6 would be:

7 7

A3003 + A 2407 = 2.187 * l0 24 + 4.634 * 1023 = 2.650 * 1024 (7.8)

Such large input alphabets do not allow enumeration.

The program which was used to estimate the number of feasible input ratios was based on

the method used to generate sets of ratios during the experiment. An iteration consisted of
picking a distance and a speed satisfying the necesary constraints. Then the number of possible
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second ratios was computed by enumeration. A second ratio out of the pool of possible ratios
was then picked randomly, and the number of possible third ratios was then computed...

Following the same procedure for the remaining ratios, for each run, the program computed the

number of possible second N2 , third N3, fourth N4 ..N7 ratios. For each run i, for three tasks

the number of possible combinations of ratios, noted Pi3 could be derived as the follow;ng

product:

Pi3 = Nil *Ni2*Ni 3*Ni4  (7.9)

and for six tasks Pi6 :

Pi6 = Nil*Ni2*Ni3*Ni4 Ni5*Ni6 *Ni7 (7.10)

The program was run 150 times for both ratios larger than one and ratios less than one. The

estimated number of of possible first, second, third ..seventh ratios were derived for ratios larger
than one and for ratios less than one for both number of ratios as follows:

Ratios <1
150

Nj1<1 =( NijI< ) /150 j=lto7 (7.11)
i=1

Ratios >1

150

Nj1> 1 =( Ni I )> / 150 j 1lto7 (7.12)
i--I

Therefore, the size of the input alphabet X3 could be derived as following:

4 _ 4
Cx3= Ni4 <1 + t Ni4 1 >1  (7.13)

i=l i=l
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The results for three tasks were the following:

Cx3 = (3003*2567*2163*1793 )+ (2407*2355*2315*2276) (7.14)

Cx3= 2.9896*1013 + 2.9867*1013 = 5.9763 * 1013 (7.15)

The size of the input alphabet X6, noted Cx6 was derived using the same method as for X3 . The

results were as follows:

Cx6 = (3003*2567*2163*1793 *1459*1161*913)

+ (2407*2355*2315*2276*2238*2202*2168) (7.16)

Cx6= 4.6236* 1022 + 3.1910*1023 = 3.6534 *1023 (7.17)

The constraints imposed on the set of ratios also created difficulties when considering the
internal variables which are described in section 7.1.2.

7.1.2 The Internal Variables

Before considering the entropy of the internal variables and the workload associated with

each algorithm, the internal variables must be characterized. Therefore, as a first step, the

subjects' approach to the experimental task and the level of detail used for modeling the
algorithms are defined. Then the methodology used to assess the probability distributions of the

internal variables is described.

Two different approaches were possible when modeling the experiment The subjects' tasks

could be interpreted either as : 'to find the smallest ratio of a population sample' or as 'given

four ratios, find the smallest'. In the first case, the distribution of the value of the smallest ratio
when observing samples of four would have been the critical issue. In the latter case, the values

of the smallest ratio would have been of no importance. Instead, the smallest ratio's position in
the sequence ( that is what is the first, second, third or fourth) would have been the required

solution. The first approach was modeled in this thesis. The stategies that the subjects reported

using were influenced by the values the ratios could take. Therefore models based on population

102



samples seemed more appropriate. Another modeling issue related to short term and long term

memory. With regard to short term memory, it is assumed that the decisionmakers are

memoryless: they do not remember the approximated value of the ratio which was smaller in the

previous comparison and must approximate it again for the following comparison. Such an

assumption was derived after talking to subjects. They reported that they generally reestimated

the ratios for each comparison. With regard to long term memory, it was assumed that the

subjects could rank order the single digits ratios and did not need any special algorithm to do so.

The modeling approach has been discussed and the level of detail used in the models is now
described. Within each algorihm, the different processes are kept as steps, but each operation
required to perform the process is not recorded as a variable. This methodology keeps the

number of internal variables under control; only the basic variables are recorded as variables.

The internal variables of the first decision of Algorithm I for three tasks are described below in

Figure 7. 1, as an example.

The notation used in Figure 7.1 may be described as follows:

dij =jth digit of distance of ratio i. dij ranges from I to 9

J 0 if the two values are the same

w21 = min(Ti,Tj) = 1 if the first is smallest, Ti in this case

2 if the second is smallest, Tj in this case

w22 = distance associated with w21, where w22 takes the value of the distance
associated with the ratio corresponding to the value of w21.

If w21 had taken a value of 1, w22 would take the values of d(Ri), since Ri would be smaller

than Rj; such a ratio could be noted Ri'. If w21 takes a value of 0, each ratio (either Ri or Rj) has

a probability of 0.5 of being chosen.

The modeling process and the choice of internal variables have been described. The next
step is to derive the probability distribution of each variable and compute the workload of each

algorithm. First, however, the impact of two of the experimental setups on the probability
distributions are discussed. The effect of having trials consisting of ratios either larger than one

or less than one is described in section 7.1.3. Then, the assumptions required to evaluate the
probability distributions are described in sections 7.2 and 7.3.
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Input vector, X X=(dl/vl, d2/v2, d3/v3, d4/v4)

Internal Variables, wi

wl =dl w5=vl w9 =trunc(dl/10) =dll w13 = trunc(vl/10) =vlI
w2 = d2 w6 = v2 wlO = trunc(d2/10) = d21 w14 = trunc(v2/1O) = v21
w3 = d3 w7 = v3 wl 1 = trunc(d3/10) = d31 w15 = trunc(v3/10) = v31
w4 = d4 w8 = v4 w12 = trunc(d4/10) = d41 w16 = trunc(v4/10) = v41

IF w17 dl<20 and vl>90 THEN Y =R1 END OF ALGORITHM
ELSE IF w18 d2<20 and v2>90 THEN Y=R2 ENDOFALGORITHM

ELSE w19 = dl l/vl1 =T1
w20 = d21/v21 = T2

w21 = min(T1,T2)
w22 = distance of w2l = d(w21)
w23 = speed of w21 = v(w21)

NEXT COMPARISON

Figure 7.1 The Information Theoretic Description of Algorithm 1: The First Decision

7.1.3 The Trials: Ratios Less than One and Ratios Larger than One

The trials were set up so that whether the ratios would be larger than one or less than one

would be picked randomly. Such a setup had an impact on the distribution of the internal

variables. There was a 0.5 probability that a trial would consist of ratios less than one, and a 0.5

probability that the trial would consist of ratios larger than one. Therefore, the entropy of an

internal variable wi may be expressed as follows:

H(wi) = - Z Pwi(wi) log 2 Pwi (wi) (7.18)
wi

where

Pwi(Wi)= pwix<1(wi1x<l)*p(x<l) + pwix>(wix>l)*p(x>l) (7.19)

x is the ratio from which wi is derived

p (x<l) = p (x>l) = 0.5 (7.20)
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If a variable wi can only be derived either from a ratio larger than one, or from a ratio less than

one then exactly one of the two equations below holds (7.21 or 7.22).

PwilX'l(wiIx<l) = 0 (7.21)

or

PwijX1g(wiIx>l) = 0 (7.22)

The input vector, X, as well as the individual ratios (di / vi) are such variables. For such

variables Equation (7.18) may be rewritten as:

H(wi) = " Z Pwj(wi) log 2 Pwi (wi) - Pwi(wi) log 2 Pwi (wi) (7.23)
wilx<1 wilx> I

Finally, Equation (7.23) for the input entropy or the entropy of the ratios may be simplified as

follows:

H(wi) = - Pwilx-I(wiIx<l) *p(x<l) log 2 [Pwilx<l (wilx<l) *p(x<l)]
wilx<l

- Pwilx>l(wiix>1) *p(x>1) log 2 [Pwilx>1 (wilx>l) *p(x>l)] (7.24)
wilx>1

As a result, the input entropy for three tasks becomes:

H(x) = 0.5 * log2 ( 2.9896* 1013) + 0.5* log2 ( 2.-867*1013 ) +1 (7.25)

H(x) = 22.3825 + 22.3818+1 = 45.764 bits (7.26)

Because of the experimental setup, for each variable, the distribution must be derived
seperately for the input vectors of elements larger than one and those of elements less than one:

two different probability distributions are obtained. Then, the two are combined as in Equation
(7.19) to evaluate the entropy of each variable of the algorithms..
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7.2 THE COMPUTATION OF ENTROPY

7.2.1 The Approach

The internal variables have been described and some of the computational issues were raised

in the previous section. This section describes the methodology followed to assess the entropy

of each variable.
A normal procedure to compute the probability distribution of each internal variable is to use

a computer program simulating a binning process to assess the histogram of each internal
variable as all the possible inputs are fed to the program. The probability distribution is then

derived from the histogram. For this particular case however, a binning process using every
element of the input alphabet may not tie used because of the size of the input alphabet.
Therefore assumptions must be made to estimate the probability distribution of each variable.

First the two "categories" of internal variables are described. Then, the methodology to estimate

the probability distribution is reviewed for each.

7.2.2 The Different Types of Variables

Two different types of variables may be identified within each algorithm: The variables for
which the entropy may be computed without comparing two ratios, and the variables for which

the entropy could only be computed after one or more of the comparisons were made. For

simplicity, the first group will be called the static variables and the second the non-static
variableF. (In Figure 7.1, variables wl to w18 are considered as static, whereas variables w19

to 23 are non-static.)

The static variables are variables that are repeated, and are the same for each four (or seven)

ratios. The distribution of the static variables were computed for one ratio, taking all the possible

ratios larger and less than one. Then the same distribution was assumed for each ratio. These
variables reflect the size of the input, and as a result dominate when considering the entropy of

the total system. The very large entropy of these variables tends to overshadow the decision

variables of the algorithms.

The non-static variables describe three categories of variables: the decision process, the

approximated value of the ratios which were chosen to be the smallest after a comparison, and

the intermediate variables used to arrive at the approximated value. The probability distribution of
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each category of non-static variables was estimated using computer programs. The distribution of

the non-static variables changes after each comparison.

7.2.3 The Entropy of the Static Variables: Assumptions and Methodology

In this section, the most important assumptions used to compute the entropy of the static

variables are given, while the methodology used to compute the entropy of a few static variables

is described.

The first static variables to be considered are the ratios before they are compared. The

distribution among ratios less than one is assumed to be uniform. The same is valid for the ratios

larger than one. This assumptions is used even though the constraints imposed on the ratios will

make some ratios appear in sets more often than others. L.t R be the pool of all feasible ratios,

R0 the pool of all feasible ratios less than one and R t be the pool of all feasible ratios larger than

one. Then the above assumptions may be described as follows:

V r C R, p(rE, Ro)=0.5=p(re RI) (7.29)

V ra e Ri, V rbS R i , pr(ra)= pr(rb) for i=0, 1 (7.30))

Also, the entropy associated with each ratio of a set x = (RI, R2, R3, R4) is assumed to be

the same. It is assumed that the entropy of the ratios is independent from the order the ratios

appear on the screen. The entropy for each ratio may be computed as follows:

HR -- - p p(R) log2 [ PR (R)] (7.31)
R

where R , R

HR = 0.5 log2 (3003) + 0.5 log2 (2407) + 1 = 12.39 bits (7.32)

The distances and the speeds forming each ratio are the next static variables studied. It is

assumed that the distances are independent from one another, but are not independent of the

speed associated with them to form a ratio. The probability distribution among the different

possible distance values is not uniform. The entropy of the distances and the speeds may be
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computed as follows:

Hwi f - Pwi(wi) 1og2 Pwi (wi) (7.33)
wi

where pwi(wi) was computed by iteration using the binning process, considering first all the

possible ratios larger than one, then all the possible ratios less than one. Each time the value wi

appeared, the frequency of wi was increased by one. The entropy was the following:

Hwi = 6.41 bits (7.34)

where wi is a speed or a distance associated with a ratio before this ratio has been compared to

another ratio.

The same procedure was done to estimate the probability distributions of the first digit of

both speeds and distances.

Hwi = 3.16 bits (7.35)

where wi is the first digit of a speed or a distance associated with a ratio before the ratio was

compared.

It is assumed that all the internal variables derived from the speeds and distances were
independent of the sequence of the ratios. (The first digits are an example of such derived internal

vaiables.) Therefore, these variables are assumed to be equally distributed for all four ratios

when considering trials of four ratios, and all seven ratios when considering trials of seven. For

example, when considering Algorithm 1, which is shown in Figure 6.1, the sets of variables

shown in Table 7.1 are equally distributed.

The probability distribution of the other static variables were derived using the binning

process and the assumptions just described.
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Table 7.1 Sets of Equally Distributed Variables

Vaiables Corresponding Internal Variables

dl,d2,d3,d4 wl to w4

vl, v2, v3, v4 w5 to w8

dll, d21, d31, d41 w9 to w12

vll, v2i, v3i, v4i w13 to wi6

decide ifdi < 20 and vi > 90 w17, w18, w24, w32

dil/vil, i =1 to 4 w19, w20, w28, w36

7.2.4 The Entropy of the Non-Static or Decision Variables: Methodology

The distribution of the non-static variables was computed differently for each algorithm,

since these variables were algorithm-specific. However, the same terminology may be used to

describe the steps that were followed.

Within each algorithm, the first two ratios noted Rland R2 were approximated into T1 and

T2 which are the variables compared for the first decision, DI. It is assumed that T1 and T 2 are

equally distributed. The distribution of the decision Di, as well as that of the minimum of T1

and T2 was found by first assessing the distributions of T1 and T2, then, finding the probability

that T 1 would be smaller and finally by finding the probability distribution of the minimum of T1

and T2. The same procedure was continued until the fourth or seventh approximated ratio was

compared to the minimum of the previous comparison. While such a procedure was followed to

find the distribution of the decision variables, the same method was used to assess the

distribution of the 'non-static' variables.

The probability that the approximated ratio xlwith distribution Pxi be less than the

approxiamted ratio x2 with distribution px2 was computed as follows:

00

p( xl< x2)= Pxl(xl) I Px2(x) (7.38)
allx xl

The distribution of the min of two variables xl, x2, was computed as follows:
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y mim (xl, x2)

(7.39)

Py(y) = Pxi(Y) I Px2(x2) + Px2(Y) I Pxl(xl) (7.40)

y y

These formulas were used to compute the entropy of the non-static variables of the different

algorithms.

7.3 THE WORKLOAD FOR EACH ALGORITHM

This section first summarizes the most important assumptions regarding the assessment of
the variables' probability distribution. Secondly, the numerical values of the workload are
presented and discussed. Thirdly, the feasibility of the results is reviewed by checking the
consistency between the algorithms. Finally, the assumption derived in Chapter 4 regarding the
correspondence between the workload for three and for six tasks is discussed. The evaluation of
workload allows the testing of the hypotheses concerning the bounded rationality constraint
which is presented in Chapter 8.

7.3.1 The Most Important Assumptions

Many assumptions and approximations have been described in section 7.2. Each has been
used in the computation of the total entropy of the appropriate algorithm(s) to evaluate the
workload associated with each algorithm. The most important and the most critical were the

following:

(1) Assume uniform distribution of the input.

(2) Assume uniform distribution of the ratios, i.e., each ratio has the same
probability of occurring in an input.

(3) The distribution of the approximated ratios and all the intermediate steps to
obtain the approximated ratios is based on the first two assumptions.

(4) After a given comparison, the rate of change in entropy of the similar types of
non-static variables is assumed to be the same. The rate of change is defined
as the ratio of the entropy of the non-static variable used for comparison i to
the entropy of the same variable when used for comparison i- 1. ( Examples of
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similar types of non-static variables would be the first digits and second digits
of the speed values, or the actual distance values and the approximation of the
distance values used to make the comparison.)

7.3.2 The Numerical Values

The workload for each number of ratios and each algorithm was computed following the

methodologies described in section 7.2. The numerical values are summarized in Table 7.2. As

one may see from the table, the value of the workload varies significantly from algorithm to

algorithm. For three tasks the workload ranges from 165.62 bits to 275.58 bits and the mean is

235.03. For six tasks, it ranges from 297.92 to 513. 59 bits and the mean is 433.04 bits.

Table 7.2 The Workload Associated with the Algorithms

Algorithm Workload Three Tasks Workload Six Tasks
(in bits) (in bits)

1 210.103 386.700
2 262.031 480.059

3 275.582 513.594
4 227.858 417.450

5 165.615 297.915

6 268.995 502.530

The variation among algorithms is weighted by the number of subjects who were associated

with the algorithm. In Chapter 6, each subject was assigned an algorithm which attempted to

model the basic operations or approximations performed by the subject. Therefore, the average

(over the subjects) workload required by the experiment may be computed by multiplying the

number of subjects who "used" a given algorithm by the workload of this algorithm. The

results, when considering the number of subjects associated with each algorithm, are

summarized in Table 7.3.
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Table 7.3 The Average Workload for the Experiment Over Subjects

Three Tasks Six Tasks

Average workload 243.625 450.270

Standard Deviation 40.353 79.057

7.3.3 Consistency Among the Algorithms

When looking at the workload for both three tasks and six tasks, the workload associated

with Algorithm 5 is signficantly lower than that of the other algorithms (165.615 bits for three
tasks and 297.915 bits for six tasks). Such a low workload is explained by the structure of the
algorithm itself. The algorithm consists of comparing the difference between the speeds and
distances of the two ratios. Such a process requires only two steps before making the
comparison i.e., compute each difference, which drastically reduces the workload. The
workload is not based on the number of steps, but on the entropy associated with each variable.
Because many of the intermediate internal variables have very significant entropies, the number
of intermediate steps required to transform the input into variables that may be compared plays a

significant role in the total entropy. Such an observation is particularily true for Algorithm 5,
which is very simple. It is also applicable to Algorithm 1 which requires a limited number of

steps before the comparisons are made.
Algorithm 1 has a larger workload than Algorithm 5 (210.103 bits for three tasks, and

386.700 bits for six tasks versus 165.615 and 297.915 bits) but it is still lower than that of the
other three algorithms. Six steps are required to transform two input ratios into two variables
that may be compared: truncate each speed and each distance (4 steps), and then form each single
digit ratio (two extra steps). The other algorithms require a significant number of steps before a

comparison is made.
The fact that Algorithms I and 5 have smaller workload than the other three is explained by

their structure. Another method to check the results of the workload values is by looking at the

three different categories of algorithms which were derived in Chapter 6.
The first category included Algorithms 1 and 2 in which the ratios were transformed into

single digit ratios and were compared. Algorithm 2 was defined as requiring more processing
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than Algorithm 1 since for the first case the rounded ratios are compared whereas in the other

case the truncated ratios are compared. The computations of workload confirmed the

expectations, the workload for Algorithm 2 is larger than that for Algorithm 1 (210.103 bits

versus 262.031 bits for three tasks and 386.700 bits versus 480.059 bits for six tasks, an

increase of 24.7 % for three tasks and 24.1 % for six tasks).

The second category of algorithms included algorithms 4, 5 and 6. The workload for

Algorithm 4 is larger than that for Algorithm 5. The same structure is used, but Algorithm 4

computes four differences as opposed to two and makes two comparisons as opposed to one.

The increase of workload was very significant, 37.6% for three tasks, and 40.1% for six tasks.

Such an increase could be expected since the amount of internal processing is almost doubled.

Algorithm 6 is a combination of Algorithms 2 and 5. It uses the first steps of Algorithm 5 to

determine if a small ratio could be spotted before any computation. If the test is not relevant, it

rounds each ratio using the same methodolgy as Algorithm 2. The workload for Algorithm 6

was slightly larger than that for Algorithm 2 as expected, (268.995 bits versus 262.031 bits for

three tasks, and 502.530 bits versus 480.059 for six tasks.) The increase of 2.8% for three and

4.6% for six tasks is small. The testing variables used in Algorithm 6 (and not present in
Algorithm 2) have entropies of a few bits only.

Finally, Algorithm 3 is a seperate category since a different strategy is used for ratios less

than one and larger than one. As a result, the number of internal variables is significantly
increased even though each comparison requires only six intermediate variables (as Algorithm 1),

two of which have entropies less than 2. Because of the different strategies for ratios less and

larger than one, the workload for Agorithm 3 is the largest of all.

From the above remarks, it appears that the values for the workload are consistent between

the algorithms. As a result the relative differences between the workload of the different

algorithms are feasible and conclusions relating the different algorithms and their 'users' may be

derived based on these values. The next step is to compare the workload for the same strategies,

but for the different number of tasks within a trial.

7.3.4 Comparing the Workload for Three and Six Tasks

In Chapter 4, it was postulated that the important parameters were not the number of ratios

but the number of tasks. The assumption was: the workload per comparison is approximately

the same for three and six tasks i.e., the workload for six tasks should be twice that for three
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tasks. The experimental results seemed to confirm this assumption since the T* values for three
and six tasks were not significantly different. This section first shows the ratio of workload for

three and six tasks for each algorithm. Then the values obtained are discussed and explained,
and the validity of the assumption is assessed. Finally, a simple linear regression modeling the

workload as a function of the number of tasks is presented.
The analytical results confirm the assumption that the workload for six tasks is

approximately twice that for three tasks. On average, the ratio of the workload for six tasks to

that of three tasks is close to 1.84. Table 7.4 shows the ratio for the six algorithms as well as the
average over the six algorithms and the average when introducing the frequency of each

algorithm.

Table7.4 The ratio of the Workload for Six Tasks to that of Three Tasks

Algorithm # Ratio Average Over Subjects

(Six Tasks / Three Tasks)

1 1.841 1.845

2 1.832

3 1.864

4 1.799

5 1.868
6 1.887

Average Over 1.839
Algorithms

The fact the the workload for six tasks is not twice that for three tasks should not be
regarded as unwanted noise. Such a 'discrepancy' is derived from the analytical models. First

the entropy of the input is not proportional to the number of comparisons and does not increase
linearly with the number of ratios because of the log function. The input for three tasks is 45.76
bits and for six 77.68 bits ). Then, the internal variables increase this difference even more

because the entropy of more than half of the internal variables reflect the entropy of the very large
input alphabet. Finally, when considering the distribution of the minimum of two equally
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uniformely distributed variables (these were the assumptions used), it will be skewed towards

the smallest values. This is particularly relevant to our experiment when considering the

distribution of the min as the number of comparisons increases. The previous paragraph may be

described analytically as follows:
Let X be an ordered population uniformly distributed and let N be the size of the population.

Then

1 ifxe X

pN(x) i x (7.41)1) 0 otherwise

Let y = min (x1, x2) where x1, x2 are two elements of X, and fy the distribution of y then:

f2y if yE x
= (7.42)

t 0 otherwise

Let z = min ( y, x3), x3  X and gz the distribution of z, then

3 Z2
g,(z) R {N (7.43)

o =otherwise

The distribution of the variable t C X being the smallest of the nth comparison and a variable u S

X is:
n 1t Xn-

f (t) = { ( 1  othrise (7.44)
1 0 otherwise

As an analogy to our experiment, x1 and x2 may be assumed to be the first two ratios to be
compared. y takes the values of the ratios kept from the first comparison, x3 is the third ratio to
be compared, z, takes the values of the ratios kept from the second comparison, etc. The

distributions become more and more skewed, thereby reducing the entropy of the minimum after

each comparison.
The decrease in entropy after each comparison ranges between 2% and 5% of the non-static
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variables. This is not very significant when considering the entropy of the whole system and the

entropy of the static variables which are not affected by the decrease due to the comparisons.

Also, in this particular case, the entropy related to the large input tends to dominate the entropy of

the system and absorb the changes due to the decrease of the entropy of the decision variables

(called non-static variables).
A simple least squares fit using the twelve data points of Table 6.2 (three and six tasks,

Algorithms I through 6),

Yi =aXi +b (7.45)

where

X i = 3, ..., 3, 6, ..., 6

Yi = 210.03, 262.031..., 268.995, 386.700, 480.059, ...502.530

yields

Y =66 X + 37 (7.46)
For

X =3 Y = 235
X=6 Y = 433

Note that the constant 37 is equivalent to about half the effort of a comparison and is not

very significant either for three or six comparisons. Because of the very few data points used

(twelve), this regression should only be considered as a gross model, but it is important to note

that the results are consistent with the other observations.
Therefore, considering all the assumptions which have been made throughout this thesis, the

analytical results do not contradict the experimental results. The assumption made in Chapter 5

was reasonable: the workload per comparison is approximately the same for three and six tasks.

The workload was evaluated for each algorithm and the values were consistent both between
algorithms and with the experimental results. Therefore, these values may be used to assess the

bounded rationality constraint for each subject and test hypotheses about the stability of Fmax
both across subjects and across tasks.
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8. THE BOUNDED RATIONALITY CONSTRAINT:
RESULTS AND ANALYSIS

The bounded rationality constraint for each subject and its behavior are presented in this

chapter. First, the hypotheses regarding the stability of Fmax are stated. Then, the methodologies

used to evaluate Fmax and to test the hypotheses are described. Next, Fmax is evaluated for each
subject and each type of trial, i.e., for three and six tasks. Finally the validity of the hypotheses

is tested and the results are compared to the statements made in Chaper 5.

8.1 THE HYPOTHESES

Two hypotheses concemingthe stability of Fmax are to be confirmed.

Hypothesis (1). Fmax is stable for an individual when minor tasks changes are made.

Hypothesis (2). F.. is stable across individuals and across tasks.

8.2 METHODOLOGIES

8.2.1 The Procedures to Evaluate Fmax

In Chapter 5, the minimum average time required to perform the experiment was derived

for each subject using the experimental results. In Chapter 7, the workload associated to each
model was evaluated. The bounded rationality constraint which is noted Fma x may now be

computed for each subject and for both types of trials combining the experimental and the

analytical results.

As described in section 4.1, Fnm is the ratio of the-wokddoad associated to the trial to the

time threshold T*. Since the values of T* were evaluated as a time per task, the value of T* has

to be multiplied either by three or six to consider the total duration of the trials. Therefore, for

each subject and for both number of tasks, the value for the bounded rationality constraint may

be computed as follows:

117



Fmax j= G ij/[ j*T*ij] (8.1)

where

i is the subject number and j is the number of tasks

G ij is the workload of the algorithm associated to subject i for j tasks

T*ij is the threshold processing time associated to subject i for j tasks

8.2.2 The Procedures for Testing the Hypotheses

The methodologies used to test the hypotheses are very similar to the methodologies used

to test for the stability of T* across trials and across subjects.

To test the stabity of Fmax across trials, first the distributions of Fmax.3 and Fmax6 are

assessed using a statistical test (the Chi-Square test) and are then compared. If the two
distributions are of the same type, then it is tested if the mean of the two distributions are

significantly different using a statistical test, (the t test ).

The second hypothesis: the stability of Fmax across trials and subjects is more simple to
confirm. First, an Fmax value is estimated for each subject, ( for each subject, Fmax is the

average of Fmax,3 and Fmax,6). Then, a Chi-Square test is used to estimate whether the Fmax

distribution is significantly different from the normal distribution or not. A non-significant

difference would lead to the conclusion that Fmax is stable both across subjects and tasks.

8.3 COMPUTATION OF Fmax

The values of Fmax were computed for each subject for both number of tasks and are

shown in Table 8.1 and were summarized in Table 8.2. The average value of Fmaxj over

subjects is 44.35 bits/sec for three trials versus 41.00 bits/sec. for six trials. The standard

deviation for three tasks is quite large 15, as is the one for six tasks, 13. It is interesting to note
that in both cases the standard deviation is almost one third of the mean.
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Table 8.1 The Fmax Values for Each Subject and Both Numbers of Tasks

Subject # Fmax,3 Fmax,6

20 42.776 30.714
21 47.036 32.636
22 83.378 64.422
23 64.838 46.516
25 25.896 23.631
26 38.380 26.350
27 45.704 43.714
28 49.510 41.220
29 28.214 22.549
31 42.719 26.839
33 31.605 29.064
34 36.016 61.100
35 27.241 35.911
36 38.124 34.798
37 30.595 31.217
38 17.310 24.954
39 44.786 44.392
41 54.397 62.652
44 65.718 55.087
45 42.096 29.775
46 28.737 23.903
50 45.150 44.840
51 31.113 42.148
52 64.684 54.414
53 40.672 42.081

Table 8.2 Summary of the Fmax Values for Both Numbers of Tasks

Fmax,3 Fm6
(bits/sec) (bits/sec)

Average 42.668 38.997
St. Dev. 15.068 12.873
Min 17.310 22.549
Max 83.378 64.422

It is important to realize however, that the values obtained for the bounded rationality

constraint are not of any specific interest if just considered as values. The different algorithms
that could be used to model the same task could increase the workload, and therefore Fma x as
well by a factor of two or more. Therefore, it is by studying the distribution of Fma x as the tasks
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is slightly changed, and across subjects, as well as by comparing the conclusions derived

analytically with the conclusions derived experimentally that the significant conclusions may be

derived. As long as each algorithm is modeled consistently with the others, the comparisons

may be done.

8.4 TESTING THE HYPOTHESES

8.4.1 The stability of F., Across Trials

To test the stability of Fmax across trials, the distribution of Fma,3 and Fmax,6 must first be

evaluated. In Chapter IV, it was established that the T* values were normally distributed for

both three and six tasks and it had been postulated that the distribution of the T*'s should be

closely related to that of Fnm. This postulation was confirmed: goodness of fit tests showed that

the distribution of both F, 3 and Fmax,6 were normal. (The Q2 error was 2.0 for three trials

and only 0.8 for six trials). Figure 8.1 shows the distribution of Fmax,3 over subjects, and

Figure 8.2 shows the frequency distribution of Fmax,6. The difference between the normal

distribution and that of the Fmax,3 values is shown in Figure 8.1, whereas the difference between

the normal distribution and the Fmax,6 values is shown in Figure 8.2. The size of the intervals is

not the same. The intervals are constructed as for the Chi-Square test: the cumulative probability

within each interval is 0.2.

Observed - Normal

F 12,
r 10

q 8'
u 6 '
e 4,
n 2

y < 20.03 20.04 to 35.81 to 50.20 to > 65.26
35.81 50.19 65.25

Figure 8.1 The Distribution of Fmax for Three Trials
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Observed - Normal

F 1O
r 8e g

q 6
u
e 4
n 21

< 21.61 21.62 to 33.21 to 44.80 to > 56.39
33.20 44.79 56.38

Figure 8.2 The Distribution of Fmax for Six Trials

The next step needed to validate the hypothesis that Fmax is stable across tasks is to

compare the means of the Fma,3 and Fmax,6 distributions. The experimental results had
postulated that Fmax was not significantly different for trials of three and six tasks. This result
was confirmed by a statistical t test. The value for the statistical t test was 1.79 . The critical

value for a two sided t test at a 0.95 level of confidence with 24 degrees of freedom is 2.06; 2.06
is larger than 1.79, so the hypothesis that the two distributions are of same mean may not be

refuted.

Therefore, one may say that Fma is stable for each subject as the number of tasks is varied

from three to six. As a result, it may be assumed that there is only one significant value for each

subject, which will be taken as the average of the Fmax 's for three and six tasks.

In addition, these results provide indirect evidence for the stability of Fmax over time, since

each subject was tested on three or four different days. (A "composite" curve resulting from

wide day to day fluctuations in the bounded rationality constraint would not likely reveal a clear

threshold.) This stability suggests that it may not be necessary to measure a decision maker's

Fmax value for every type of task the decision maker may have to perform. Instead, the decision

maker's Fmax value cu.,1d be measured using a prototypic "calibration" task. The value obtained

from this prototypic task could be safely assumed to apply to a substantial range of structurally

similar tasks.
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8.4.2 The Stability of Fmax Across Subjects

The next step of this Chapter is to study the behavior of Fmax over all subjects. The Fmax

associated with each subject i was computed as follows:

Fmax,i = E Fmax,ij / 2 for i = 1 to 25 (8.2)
j=3,6

The Fmax values were summarized in Table 8.3. A Goodness of fit test showed that the
distribution was not significantly different from normal (the error is Q2 = 5.2 < X0 .95 2 = 5.99 ).
Therefore, it may be assumed that the distribution of Fmax over subjects is stable, and the
analytical results confirm the experimental results. Figure 8.3 shows the disribution of the
individual values of Fnm.

The analytical results have confirmed the experimental results. The bounded rationality not

only exists for all the subjects, but it is uniformly distributed for each type of trials over the
subjects, it is stable to minor tasks changes, and finally it is also uniformly distributed when
assuming only one Fmax value for each subject

Table 8.3 Summary of the Average Fmax Values over Subjects
( in bits per sec.)

Mean 40.830
Standard Deviation 13.013
Min 21.132
Max 73.906

Observed - Normal

F 12,
r 10
e
q 8

u 6'
e 4
n 2
cc 0 1 --7 -.

< 20.03 20.04 to 35.81 to 50.20 to > 65.26
35.81 50.19 65.25

Figure 8.3 Distribution of the Average Fmax Values over Subjects
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When considering a particular task performed by well trained decisionmakers, it may be

assumed that despite the individual differences and the different algorithms used, the bounded

rationality is uniformly distributed among people. One could submit the hypothesis that in a very

strict environment such as the military, where people who perform the same job should all be

very qualified, the distribution of individual bounded rationality constraint for similar tasks
would not only be normal but also extremely peaked. This could help significantly when

designing organizations where the decisonmakers are not to be overloaded.
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9. CONCLUSIONS AND FUTURE RESEARCH

Both the analytical and experimental results were needed to answer most of the questions

related to the bounded rationality constraint of human decision makers. The first significant

results are derived from the experimental analysis in Chapter 5. The existence of a threshold

beyond which performance degrades rapidly, namely, the bounded rationality constraint, was

established. Then, on the basis of the first result, two hypotheses were formulated. One dealt

with the stability of the bounded rationality constraint across similar tasks and the other with the

stability across subjects. The experimental results were combined with the results from the

mathematical models to derive the value of the maximum processing rate for each subject for

trials of three and six tasks, respectively. The hypotheses were then tested: the bounded

rationality constraint was shown to be both stable across similar tasks and across subjects.

Information theory was the mathematical tool used to assess the amount of cognitive

workload required to' perform the experiment, given the different algorithms that were modeled.

The workload associated with the different algorithms was consistent with the complexity of the

algorithms and the different categories of algorithms. Such a result gave some validation of the

mathematical model used. When trying to model the difference between the number of ratios,

there was a slight discrepancy between the experimental and analytical results. Three

explanations were offered to account the slight difference. First, the model for three and six

tasks might not have captured the different approach that the subjects might have taken during the

experiment. When assessing models in Chapter 6, it was found that simulations of the models

for six tasks consistently predicted worse performance than the subjects', whereas the

performance was very similar when considering three tasks. Second, considering the very large

size of the input alphabet, it is possible that the subjects did not recognize that the probability

distribution of some of the variables was changing as the number of ratios to consider increased;

the subjects might not have changed their strategy accordingly. Third, it should not be forgotten

that the experimental results, particularly the threshold values for the time intervals, were

artificially constructed from the data, and therefore necessarily introduced some error. Finally,

other factors such as time allocation, or short term memory may have affected the workload, but

consideration of these factors was beyond the scope of this first experimental project. Because

not a single subject mentioned using a different approach when processing trials of three and six

comparisons, the models described in this report are reasonable considering the small

discrepancy.
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The existence of a bounded rationality constraint for each subject was proved from the

experimental results. Performance was fairly stable before it degraded rapidly. The Gompertz

(S-shaped) curves which were used to model the experimental results smoothed over

discrepancies and, at the same time made it impossible to discern changes in strategies.

Therefore, it may be argued that the estimated values of the critical times, T*, which were

constructed graphically, represented an average over several time thresholds, each associated

with a given algorithm requiring a certain amount of cognitive workload.
Both the experimental and analytical results confirmed the stability of of the bounded

rationality constraint, Fma x , across similar tasks and across subjects. However, when

comparing the experimental and analytical results, it appeared that the stability of Fmax,3 and
Fmax,6 over subjects (both distributions are normal) was a more reliable result than the stability

of the individual Fmax across subjects. ( The Q2 value was larger for the Fmax distribution than

for the Fmax.4 and Fmax, 7 distributions). This slight difference is derived from the discrepancy

between the workload per comparison for trials of three and trials of six tasks. One may

conclude however that Fma x is stable across tasks for each individual, across individuals for

each type of task, and finally that Fmax is stable when considered simultaneously across tasks

and across individuals. Considering the nature of the experiment, (i.e., the large size of the

input alphabet which did not allow enumeration), the number of different strategies that could be

used to perform the task, and the speed at which some of the subjects were capable to perform

the task, it can be concluded that the obtained results were very significant.

This experiment is only the first in a series of experiments trying to analyze and quantify
the bounded rationality of human decisionmakers under pressure. The task which was analyzed

was very basic and included only a single decisionmaker. Research has been undertaken at the

Laboratory for Information and Decision Systems at MIT to design multi-person experiments and

both validate some of the results obtained in this project on a multiperson level and derive other

conclusions on the behavior of the bounded rationality constraint. When considering multi-

person organizations, the impact of one DM being overloaded on the performance on the

organization as a whole is an important topic to investigate in the context of command and control

organizations.
Of course, the key objective of the overall research effort is to design and evaluate

organizations carrying out distributed tactical decisionmaking. The results of this project allow
now the calibration of the human decisionmaker models for use in the algorithms for the design

of organizations that meet performance requirements.

125



10. REFERENCES

Anderson, N. H. (1974). Information integration theory: A brief survey. In Krantz, Atdnson,
Luce, and Suppes (Eds.) Contemporary developments in mathematical psychology:
measurement, psychophysics, and neural information processing. Freeman and Co.

Anderson, N. H. (1983). Foundations of information integration. Academic Press, New York.

Anderson, N. H., and J. C. Shanteau (1970). Information integration in risky decision making.
Journal of Experimental Psychology, 34, pp.441-451.

Andreadakis, S. K., and A. H. Levis (1987). Accuracy and timeliness in decisionmaking
organizations. Proc. 10th IFAC World Congress, Pergamon Press, New York.

Bazerman, M. H. (in press). The relevance of Kahneman and Tversky's concept of framing to
organization behavior. Journal of Management.

Bejjani, G. J. (1985). Information storage and access in decisionmaking organizations. S.M.
Thesis, LIDS-TH-1434, MIT, Cambridge, MA.

Ben Zur, H., and S. J. Breznitz (1981). The effects of time pressure on risky choice behavior.
Acta Psychologica, 47, pp.89-104.

Bettman, . R., W. J. Johnson and I. W. Payne (1986). Cognitive effort and decision making
strategies: A componential analysis of choice. Unpublished manuscript, Fuqua School of
Business, Duke University.

Boettcher, K. L., and A. H. Levis (1982). Modeling the interacting decisionmaker with bounded
rationality. IEEE Trans. Systems, Man, and Cybernetics, SMC- 12, pp. 334-344.

Cartwright, D. (1973). Determinants of scientific progress. American Psychologist, 28,
pp.222-231.

Chyen, G.H.-L., and A. H. Levis (1985). Analysis of preprocessors and decision aids in
organizations. Proc. IFAC/IFIP/IFORS/IEA Conference on Analysis, Design and
Evaluation of Man-Machine Systems, Varese, Italy.

Christensen-Szalanski, J. J. J., and L. R. Beach (1984). The citation bias: fad and fashion in
the judgment and decision literature. American Psychologist, 39, pp.75-78.

Conant, R. C. (1976). Laws of information which govern systems. IEEE Trans. on Systems,
Man, and Cybernetics, SMC-6, No. 4.

Cothier, P. (1984). Assessment of timeliness in command and control. S.M. Thesis,
LIDS-TH-1391, MIT, Cambridge, MA.

Crozier, W. R. (1978). Evaluating the worth of gambles. British Journal of Psychology, 69,
pp.179-183.

126



Donders, F. E. (1983). Die schnelligkeit psychischer processse. Archiv Anatomie und
Physiologie.

Einhorn, H. J., and R. M. Hogarth (1981). Behavioral decision theory: Processes of judgment
and choice. Annual Review of Psychology, 32, pp.53-88.

Gopher, D., M. Brickner, and D. Navon (1982). Different difficulty manipulations interact
differently with task emphasis: Evidence for multiple resources. Journal of Experimental
Psychology: Human Perception and Performance, 8, pp.146-157.

Gopher, D., and E. Donchin (1986). Workload: An examination of the concept. In K. Boff,
and L. Kaufman (Eds.), Handbook of Perception and Human Performance. John Wiley
and Sons, New York.

Green, D. M., and J. A. Swets (1966). Signal detection theory and psychophysics. John Wiley
and Sons, New York.

Greitzer, F. L., and R. L. Hershman (1984). Modeling decision making strategies in simulated
AAW operations. Proc 7th MIT/ONR Workshop on C3 Systems. LIDS-R-1437, MIT,
Cambridge, MA. pp.145-150.

Greitzer, F. L., S. G. Hutchins and R. T. Kelley (1984). Dual-task performance in a simulated
anti-air warfare (AAW) problem. Report NPRDC TR-84-39.

Hall, S. A. (1982). Information theoretic models of storage and memory. S.M. Thesis,
LIDS-TH- 1232, Laboratory for Information and Decision Systems, MIT, Cambridge, MA.

Hall, S. A., and A. H. Levis (1983). Information theoretic models of memory in human
decisionmaking models. Proc. 6th MITIONR Workshop on C3 Systems, LIDS-R- 1354,
MIT, Cambridge, MA.

Hillion, H. P., and A. H. Levis (1987). Timed event-graph and performance evaluation of
systems. Proc. 8th European Workshop on Applications and Theory of Petri Nets,
Zaragoza, Spain.

Hillion, H. P. (1986). Performance evaluation of decisionmaking organizations using timed
Petri Nets. S. M. Thesis, LIDS-TH-1590, Laboratory for Information and Decision
Systems, MIT, Cambridge, MA.

Hogarth, R. M. (1975). Decision time as a function of task complexity. In Wendt and Vlek
(Eds.), Utility probability, and human decision making. D. Reidel Publishing Co.,
Dordrecht, Holland.

Hogarth, R. M. (1980). Judgment and choice. John Wiley and Sons, New York.

Hogarth, R. M. (1981). Beyond discrete biases: Functional and dysfunctional aspects of
judgmental heuristics. Psychological Bulletin, 90, pp. 197 -2 17 .

Hogarth, R. M., and S. Makridakis (1981). The value of decision making in a complex
environment: An experimental approach. Management Science, 27, pp.93-107.

127



L

Kahneman, D., P. Slovic, and A. Tversky (Eds.),(1982). Judgment under uncertainty:
Heuristics and biases. Cambridge University Press, England.

Kahneman, D., and A. Tversky (1979). Prospect theory: An analysis of decisions under risk.
Econometrica, 47, pp.263-291.

Karkarmar, U. (1978). Subjectively weighted utility: A descriptive extension of the expected
utility model. Organizational Behavior and Human Performance, 21, pp.61-72.

Kelley, R. T., and F. L. Greitzer (1982). Effects of track load on decision performance in

simulated command and control operations. Report NPRDC TR-82-21.

Khinchin, A. I. (1957). Mathematical foundations of information theory. Dover, New York.

Kleinmuntz, D. N., and J. B. Thomas (in press). The value of action and inference in dynamic
decision making. Organizational Behavior and Human Decision Processes.

Levis, A. H. (1984). Information Processing and Decisionmaking Organizations: A
Mathematical Description. Large Scale Systems. Vol.7, pp.151-163.

Levis, A. H. (1988). Human organizations as distributed intelligence systems. Proc. IFAC
Symposium on Distributed Intelligence Systems, Pergamon Press, Oxford.

Lopes, L. L. (1982). Toward a procedural theory of judgment. Technical report, Wisconsin
Human Information Processing Program (WHIPP 17), Madison, WI.

Lopes, L. L. (in press). Between hope and fear: The psychology of risk. Advances in
Experimental Social Psychology.

Lopes, L. L., and J. T. Casey (1987). Tactical and strategic responsiveness in a competitive
risk-taking game. Technical report, Wisconsin Human Information Processing Program
(WHIPP 28), Madison, WI.

Louvet, A. C., J. T. Casey, and A. H. Levis (1988). Experimental investigation of the
bounded rationality constraint. In The Science of Command and Control, S. E. Johnson
and A. H. Levis, Eds., AFCEA International Press, Washington, DC.

March, J .G.and H. A. Simon (1958). Organizaion. John Wiley and Sons, New York.

March, J. G. (1978). Bounded rationality, ambiguity, and the engineering of choice. Bell J.
Economics, Vol. 9.

Martino, J. P. (1972). Technological forecasting for decision-making. New York, NY:
Elsevier.

McGill, W. J. (1954). Multivariable information transmission. Psychometrika, Vol. 19, No. 2.

Miller, J. G. (1969). Adjusting to overloads of information. Organizations: Systems, Control,
and Adaptation, Vol. II, J.A. Litterer, Ed., John Wiley and Sons, New York.

Neisser, U. (1976). Cognition and reality: Principles and implications of cognitive

128



psychology. Freeman, San Francisco, CA.

Newell, A., and H. A. Simon (1972). Human Problem Solving. Prentice-Hall, Englewood
Cliffs, N.J.

Nisbett, R., and L. Ross (1980). Human inference: Strategies and shortcomings of social
judgment. Prentice-Hall, Englewood Cliffs, N.J.

O'Donnell, R., and F. T. Eggemeier (1986). Workload assessment methodology. In K. Boff,
and L. Kaufman (Eds.), Handbook of Perception and Human Performance. John Wiley
and Sons, New York.

Payne, J. (1982). Contingent decision behavior. Psychological Bulletin, 92, pp.382-402.

Payne, J. W., J. R. Bettman, and E. J. Johnson (1986). Adaptive strategy selection in decision
making. Unpublished manuscript, Fuqua School of Business, Duke University.

Peterson, J. L. (1981). Petri Net theory and the modeling of systems. Prentice-Hall,
Englewood, NJ.

Schneider, S. L., and L. L. Lopes (in press). Reflection in preferences under risk: Who and
when may suggest why. Journal of Experimental Psychology: Human Perception and
Performance.

Schneider, W., S. T. Dumais and R. M. Shiffrin (1983). Automatic and control processing and
attention. In R. Parasuraman, R. Davis, and J. Beatty (Eds.), Varieties of attention.
Academic Press, New York.

Schoemaker, P. J. H. (1982). The expected utility model: Its variants, purposes, evidence and
limitations. Journal of Economic Literature, 20, pp.529-563.

Shannon, C. E., and W. Weaver (1949). The mathematical theory of communication.
University of Illinois, Urbana, IL.

Slovic, P. (1962). Convergent validation of risk-taking measures. Journal of Abnormal and
Social Psychology, 65, pp.68-7 1.

Slovic, P., B. Fischhoff, and S. Lichtenstein (1977). Behavioral decision theory. Annual
Review of Psychology, 28, pp. 1-39.

Stabile, D. A., and A. H. Levis (1984). The design of information structures: Basic Allocation
strategies for organizations. Large Scale Systems, Vol. 7.

Stabile, D.A. (1981). The design of information structures: Basic allocation strategies for
organizations. S.M. Thesis, LIDS-TH-1098, Laboratory for Information and Decision
Systems, MIT, Cambridge, MA.

von Neumann, J., and 0. Morgenstern (1947). The Theory of games and economic behavior.
Princeton NJ: Princeton University. (2nd edition)

Wickens, C. D. (1984). Engineering psychology and human performance. Charles F. Merrill,

129



Columbus, OH.

Wierwille, W. W., and J. G. Casali (1983). A validated rating scale for global mental workload
measurement applications. Cited in ODonnell and Eggemeier (1986).

Wright, G. (1985). Behavioral Decision Making. Plenum, New York.

Wright, P. L. (1974). The harassed decision maker: Time pressures, distraction, and the use of
evidence. Journal of Applied Psychology, 59, pp.555-561.

Wright, P. L., and B.Weitz (1977). Time horizon effects on product evaluation strategies.
Journal of Marketing Research, 14, pp.429-443.

130



LABORATORY FOR INFORMATION AND DECISION SYSTEMS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CAMBRIDGE, MASSACHUSETTS

APPENDIX:

EXPERIMENTAL PROGRAM

USER GUIDE

(Version 1.1)

by

Jeff T. Casey

July 1987

131



TABLE OF CONTENTS

I. Introduction ............................................................... 3

II. Hardware and Software Requirements ................................. 3

III. Setting Up ................................................................. 3

IV. Sample Session ............................................................ 4

V. Instructions to Subject ................................................. 7

VI. Data File Format ........................................................... 10

VII. Reference .................................................................. 12

132



,- I . I II .. . . . . o . . . .. . I

I. Introduction

This program is designed to collect from human subjects experimental data concerning the

bounded rationality constraint. Technical details of the program can be found in this report or in

Louvet et al. (1988). Should modifications of the source code be necessary, an annotated listing

is available on the Program Diskette.

II. Hardware and Software Requirements

The program has been run successfully on a Compaq Deskpro Model 2 equipped with an

8087 math co-processor, a monochrome graphics card (640 X 200 pixels), 640K of random

access memory, and a monochrome monitor. The program is written in Turbo Pascal version

3.01A. The operating system that has been used is MS-DOS version 2.11. The program has

also been run on an IBM PC AT with the 80287 math co-processor and 640K of memory. None

of the high resolution graphics capabilities of the AT were used. Therefore, the program should

be portable to a wide variety of PC compatible machines.

III. Setting Up

Two diskettes are required: the program diskette and a data diskette. The following

Turbo Graphics Toolbox files must be present on the program diskette:

TYPEDEF.SYS,

GRAPHIX.IBM,
KERNEL.SYS,
WINDOWS.SYS, and

4X6.FON.

In order to prevent loss of data, the data diskette must have enough free space to store the data

file. For the experiment reported in Louvet et al. (1987), approximately 13K bytes were needed

per file (7K for practice session files), where one file contains the data from a single experimental

session. Data files should be backed-up immediately following each session.

The procedure for setting up to run the program differs on machines having two floppy disk

drives versus those having a single floppy and a hard disk. On machines with two floppy disk

drives, insert the program diskette in the primary drive (Drive a) and a data diskette in the
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remaining drive (Drive b). On machines with a hard disk, first insert the program diskette and
copy its contents onto the hard disk. Then replace the program diskette with a data diskette. If
the experimental program is already resident on the hard disk, the copy step may be omitted and
only a data diskette is needed. On either system, execute the compiled program file from
MS-DOS by typing EXPER <return>.

IV. Sample Session

The following is a sample dialogue between the program and the experimenter. The
information generated by the program is shown in italics. The permissible responses are shown

in brackets.

Use E to exit program at input statements.
Is this going to be a demonstration only? [Y,N,E]

This option is used for the initial demonstration of the program to subjects. In addtition,
subjects should be given a few minutes of practice in the demonstration mode prior to the start of
each session. As described below, the demonstration mode permits the program to be aborted at
any time. Entering 'E' in response to any query prior to the start of the session will cause the
program to abort.

Use default parameters? [Y,N,E]

The parameters referred to here are the minimum time per comparison, maximum time per
comparision, increment size for time per comparison, the various numbers of threats to be used,
the number of iterations between breaks (rest periods), and the number of repetitions of the entire
iterate/break cycle. The parameters are different for demonstration, practice and actual
experiment. (The time per comparison values are greatest for demonstration and least for the
actual experiment.) Refer to the source code if it is necessary to change permanently the default
parameters. (The name of the releveant procedure is GETINFO.)

Display lnfo? [Y,N,E]

If this question is answered 'N', the information underlined below will not appear.
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Otherwise this information will appear, whether or not the default parameters are used. The

purpose of this option is to prevent subjects from seeing, and perhaps misinterpreting,

information concerning the total number of comparisons, approximate duration of session, etc.
This option does not affect the subsequent queries.

If the "use default parameters" query is answered 'N', the experimenter will be queried

concerning each of the primary experimental parameters listed above:

time values are REAL, but must be in multiples of O.05 seconds.

minimum number of seconds per comparison: [real number]

maximum number of seconds per comparison: [real number]

change time per comparison in what size steps (in seconds)? [real number]

Note that the difference between the minimum and maximum time per comparison must be

an even multiple of the step size.

number of dfferent time per comparison values = X
how many different numbers of targets (INTEGER)? [integer, e.g. 2]

total number of trials = X
(for one ascending & one descending seauence)

enter number of targets [ 11: [integer < 13]

enter number of targets [21: [integer < 13]

Normally, one complete revolution of the clock consumes 30 seconds. If the maximum time

per trial (i.e., the product of the maximum number of seconds per comparison and the maximum
number of comparisons--the maximum number of targets minus one) is greater than thirty

seconds, a minor modification must be made to the source code. The constant
THIRTYSECCLK must be set to false. This change will cause one clock revolution to consume

60 seconds.

total number of coAmarisons per replication = X
approximate total duration of one replication = X minutes

replicate the series of trials specified above how many times (INT)? [integer]

This is the number of replications before a break. (A replication consists of o, 2 ascending
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and one descending iteration for each number of targets.) It is desirable that this value be

adjusted to allow a break at least every 10 minutes.

replicate the resulting series of trials how many times (INT)? [integer]

This is the number of repetitions of the entire iterate/break cycle (i.e., the number of breaks

in the course of the session). A break will not be inserted at the end of the session.

total number of trials = X

total number of comparisons =

approximate total duration of experiment = X minutes

If this is not a demonstration session, then data will be stored on disk. In this case, the

experimenter is queried for a subject number and a session number.

subject number: [integer]

session number: [integer or P]

The P' option is used to indicate that this is a practice session. Practice data a= stored on

disk. Actual experimental sessions are numbered sequentially.

If the machine in use has a hard disk and one floppy, and this is not a demonstration

session, the following message will appear.

Insert diskette for drive B: and strike

any key when ready

In this case, simply press return. However, if this message reappears, or if a two-floppy

disk system is in use, check to see that the data diskette is in place.

If a data file already exists on the diskette for the subject and session numbers specified, the

following message will appear

Data file for subject A session B already exists. OVERWRITE? [Y,N,E]
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'Y' will cause the existing file to be overwritten. 'N' will cause the program to abort. Note

that there are many ways of losing data despite this safeguard. Thus it is important to keep an

up-to-date log of subjects and sessions.

After a pause the following query will appear:

run experiment? [Y,N,EJ

The subject should be seated and poised at the keyboard before a response is made to the

above query. 'Y' initiates the session. 'N' causes the program to abort. For practice and real

sessions, this is the last opportunity to abort the program without re-booting. Demonstration

sessions may be aborted at virtually any time by pressing the space bar, followed by 'E'.
Normal termination of a session is indicated by a "thank you for your help" message. The data

file is closed prior to this message. Pressing the space bar at this point will cause the program to

terminate.

V. Instructions to Subject

Instructions similar to the following (used by Louvet et al., 1988) should be provided to the

subject in written form:

In this experiment, we are attempting to measure how much information
people are able to process accurately in a fixed amount of time.

The experiment involves a computer game. The way the game works is
this: The large circle represents a radar screen. You are located at the dot in the
center of the radar screen. There are several "targets" or "threats" (e.g., enemy
aircraft) converging simultaneously on your location. Your task is to determine
which threat will reach you first (e.g., so that it can be intercepted). The threats
will be shown on the radar screen two at a time. For each threat, two pieces of
information will be provided--the distance and the speed. This information will
be presented as a fraction for each threat--the numerator is the distance and the
denominator is the speed. Thus the threat which has the smallest ratio is the one
that will reach you first. You will enter your responses into the computer by
using the arrow keys on the numeric keypad on the right side of the keyboard.
The experimenter will show you how to use these keys.

Once you have selected the threat with the smaller ratio, the other threat will
disappear and a new one will appear which has a different ratio. Once again you
choose the threat having the smaller ratio. All of the threats that are converging
upon you are represented in the box to the left of the radar screen. Each time a
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new threat appears on the radar screen, one will disappear from this box. Thus
the number of threats you have left to compare is shown by the number of
DI/SP's that remain in the box. After you have compared the final two threats
and entered your response, the correct answer (the threat with the smallest ratio)
will flash. If you were correct, then the one target remaining on the screen will be
the one that flashes. Then a new trial will begin; that is, a new set of threats will
appear in the box and you will repeat the process.

The amount of time you have to compare the ratios of all of the threats will
change systematically from trial to trial. The clock shows how much time you
have and how much of the time has elapsed thus far. One revolution of the clock
takes 30 seconds (not 1 minute). The clock always starts at 12 o'clock. If, for
example, the other hand is at 6 o'clock, this indicates that you have 15 seconds to
compare all of the threats. The moving hand shows elapsed time. If you have
not yet finished when time expires, the computer will go on to the next trial.

At the beginning of each trial the clock's second hand will flash to indicate
the amount of time allotted for the trial. Be sure to notice how much time is
indicated. With practice you will be able to use this information to pace yourself
and take full advantage of the amount of time available. The amount of time
allotted for each trial will be relatively large at first and will then gradually
decrease to a minimum value. When the minimum value is reached, the time per
trial will begin increasing and continue increasing until a maximum value is
reached.

As time pressure increases, you will sometimes have too little
time to compare the ratios carefully. Unless you are confident that
your response will be correct, it is better to risk letting time run out
before you finish all of the comparisons. You will hear a low-pitched
tone whenever you make an incorrect response.

Every so often, the number of threats in the box will change and, therefore,
the number of comparisons you have to make will change. The entire box will
flash to indicate that the number of threats is about to change. When this
happens, you will be allotted proportionately more or less time, as indicated by
the clock.

A two-second, high-pitched tone indicates that it is time for a break. The
program will pause until you press the space bar.

The experimenter will be happy to answer questions at any time.

While the subject reads the instructions, a "frozen" in-progress trial should be present on

the screen. This can be accomplished by running the program in the demonstration mode. After

the first trial has begun, press the space bar to freeze the program. Press the space bar again to

make the program resume. When the subject has finished reading the instructions, the

experimenter should reiterate the major points and help the subject through the first two or three

trials.
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VI. Data File Format

Data file names have the following fo'mat:

xSyNz.D,

where x is a one-digit integer indicating the number of the experiment (e.g., the experiment
reported by Louvet et al. was experiment 1), y is a two-digit integer indicating the subject
number, and z is a one-digit integer indicating the session number or the letter 'P' (indicating a

practice session). The data files are text files (e.g., they can be edited using the Turbo Pascal
Text Editor). Each data file line contains the data for one trial. The format of each line is shown
in Table 1.

Table l: Format of each data file line

Variable Type Field Specification

Time per comparison real 1.2"
Number of targets integer 2
Direction of sweep integer 1
Performance integer I
blank space -- 1
Distance of target 1 integer 2
Speed of target 1 "

Distance of target n** ....
Speed of target n .
blank space -- 1
Reponse to comparison 1 integer 1

Response to comparison n-1
blank space -- 1
Response time to comparison 1 integer 4

Response time to comparison n-1
* Format is a.b, where a is number of digits to left of

decimal and b is number of digits to right of decimal.

** n = number of targets.

139

__



Time per comparison is in seconds. A value of 1 for direction of sweep denotes a series

descending in terms of time per comparison, while a value of 2 denotes an ascending series. (A
descending series always preceeds an ascending series.) A value of 0 for performance indicates
an incorrect reponse, a value of 1 indicates a correct response, and a value of 2 indicates that the

comparisons were not completed before time ran out.
The distance and speed values are in the order in which they were presented to the subject.

Thus the values for the targets presented for comparison 1 (i.e., targets 1 and 2) are encountered

first as the information is read from left to right. Each response to comparison value is the
number of the target that was selected on that comparison. Thus the first response to comparison

value will always be 1 or 2, the second 1, 2 or 3, etc. A response to comparison value of 0
indicates that time ran out before a response was made to that comparison. The correctness of

any comparison can be determined by finding the actual correct response for the comparison

from the distance and speed information and comparing the result with the corresponding
response to comparison value. The response time to comparison values are in milliseconds. The
time is not cumulative; it is measured from the time the new ratio(s) for the comparison appear on

the screen.
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